Math 10B. Lecture Examples.

Section 7.3. Tables of integrals^{\dagger}

Example 1 Find the area of the region between $y = \frac{1}{x(3x+6)}$ and the x-axis for

 $1 \leq x \leq 3.$ Use the following formula from a table of integrals:

$$\int \frac{1}{(ax+b)(cx+d)} \, dx = \frac{1}{ad-bc} \ln \left| \frac{ax+b}{cx+d} \right| + C \quad \text{for } a \neq 0, c \neq 0, ad-bc \neq 0$$

Answer: [Area] = $\frac{1}{6} \ln(\frac{9}{5})$

$$\int x^{2} e^{ax} dx = \left(\frac{1}{a}x^{2} - \frac{2}{a^{2}}x + \frac{2}{a^{3}}\right) e^{ax} + C$$

Answer: $F(x) = (x^2 - 2x + 2)e^x + 1$

Example 3 Find the area of the region between the x-axis and $y = \sin x \cos x$ for $0 \le x \le \frac{1}{2}\pi$. Use the following formula from a table of integrals:

$$\int \, \sin(ax) \cos(ax) \, dx = \frac{1}{2a} \sin^2(ax) + C$$

Answer: [Area] = $\frac{1}{2}$

Example 4 Find the antiderivative $\int \frac{e^x}{4-(e^x)^2} dx$. Use the following formula from a table of integrals:

$$\int \frac{1}{\mathbf{a}^2 - \mathbf{u}^2} \, \mathbf{d}\mathbf{u} = \frac{1}{2\mathbf{a}} \ln \left| \frac{\mathbf{u} + \mathbf{a}}{\mathbf{u} - \mathbf{a}} \right| + \mathbf{C}$$
Answer:
$$\int \frac{e^x}{4 - (e^x)^2} \, dx = \frac{1}{4} \ln \left| \frac{e^x + 2}{e^x - 2} \right| + C$$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/~ashenk/:[‡] Section 8.5: Examples 1 through 3

 $^{^\}dagger {\rm Lecture}$ notes to accompany Section 7.3 of Calculus by Hughes-Hallett et al.

 $[\]ddagger$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.