Math 10B. Lecture Examples.

Section 7.3. Tables of integrals ${ }^{\dagger}$

Example 1 Find the area of the region between $y=\frac{1}{x(3 x+6)}$ and the x-axis for $1 \leq x \leq 3$. Use the following formula from a table of integrals:

$$
\int \frac{1}{(a x+b)(c x+d)} d x=\frac{1}{a d-b c} \ln \left|\frac{a x+b}{c x+d}\right|+C \quad \text { for } \mathbf{a} \neq 0, c \neq 0, a d-b c \neq 0
$$

Answer: [Area] $=\frac{1}{6} \ln \left(\frac{9}{5}\right)$
Example 2 Find a formula for the function $y=F(x)$ such that $F^{\prime}(x)=x^{2} e^{x}$ for all x and $F(0)=3$. Use the following formula from a table of integrals:

$$
\int x^{2} e^{a x} d x=\left(\frac{1}{a} x^{2}-\frac{2}{a^{2}} x+\frac{2}{a^{3}}\right) e^{a x}+C
$$

Answer: $F(x)=\left(x^{2}-2 x+2\right) e^{x}+1$
Example 3 Find the area of the region between the x-axis and $y=\sin x \cos x$ for $0 \leq x \leq \frac{1}{2} \pi$. Use the following formula from a table of integrals:

$$
\int \sin (a x) \cos (a x) d x=\frac{1}{2 a} \sin ^{2}(a x)+C
$$

Answer: [Area] $=\frac{1}{2}$
Example 4 Find the antiderivative $\int \frac{e^{x}}{4-\left(e^{x}\right)^{2}} d x$. Use the following formula from a table of integrals:

$$
\begin{aligned}
& \qquad \int \frac{\mathbf{1}}{\mathbf{a}^{2}-\mathbf{u}^{2}} \mathbf{d u}=\frac{\mathbf{1}}{\mathbf{2 a}} \ln \left|\frac{\mathbf{u}+\mathbf{a}}{\mathbf{u}-\mathbf{a}}\right|+\mathbf{C} \\
& \text { Answer: } \int \frac{e^{x}}{4-\left(e^{x}\right)^{2}} d x=\frac{1}{4} \ln \left|\frac{e^{x}+2}{e^{x}-2}\right|+C
\end{aligned}
$$

Interactive Examples

Work the following Interactive Examples on Shenk’s web page, http//www.math.ucsd.edu/ $\operatorname{arshenk} /:^{\ddagger}$
Section 8.5: Examples 1 through 3

[^0]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 7.3 of Calculus by Hughes-Hallett et al.
 \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

