Math 10B. Lecture Examples.

Section 7.5. Approximating definite integrals^{\dagger}

Example 1 Calculate the Midpoint Rule approximation of $\int_0^1 x^2 dx$ corresponding to the partition of [0,1] into five equal subintervals. Draw the curve $y = x^2$ with the rectangles whose areas give the approximation.

Answer: Figure A1. • [Midpoint Rule approximation] = 0.33

Figure A1

Example 2 Calculate the Trapezoid Rule approximation of $\int_0^{15} g(x) dx$ with three subintervals for the function y = g(x) of Figure 1. Draw the trapezoids whose areas give the approximation.

Answer: Figure A2 • [Trapezoid-Rule approximation] = 1275

 $^{^\}dagger {\rm Lecture}$ notes to accompany Section 7.5 of Calculus by Hughes-Hallett et al.

Example 4 Give the Trapezoid Rule approximation of $\int_0^{30} x^2 dx$ with three subintervals.

Answer: [Trapezoid Rule approximation] = 9500

Example 5The next table gives the rate $\mathbf{r} = \mathbf{r}(\mathbf{t})$ (million metric tons per year) at which
grain was produced in the world at ten-year intervals from 1950 to 1990.
(1)
Use the Trapezoid Rule to estimate the total world grain production from
the beginning of 1950 to the beginning of 1990.

Year	1950	1960	1970	1980	1990
r(t)	631	847	1096	1447	1780

Answer: [Total production] $\approx 45,955$ million metric tons of grain

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/~ashenk/:[‡] Section 6.6: Examples 4a and 4b

⁽¹⁾Data adapted from Vital Signs, 1992, p. 25. Source: USDA, World Grain Database.

 $^{^{\}ddagger}$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.