Math 10B. Lecture Examples.

Section 7.7. Improper integrals ${ }^{\dagger}$

Example $1 \quad$ Evaluate $\int_{3}^{\infty} \frac{1}{\mathrm{x}^{3}} \mathrm{dx}$.
Answer: $\int_{3}^{\infty} \frac{1}{x^{3}} d x=\frac{1}{18}$
Example $2 \quad$ Find the area of the region between $y=1 / x$ and the x-axis for $x \geq 1$. Answer: Figure A1 • [Area] $=\infty$

Figure A1

Example 3 Is $\int_{0}^{\infty} \cos \mathrm{x} \mathrm{dx}$ defined?
Answer: $\int_{0}^{\infty} \cos x d x$ is not defined.
Example $4 \quad$ Evaluate $\int_{0}^{9} \frac{1}{\sqrt{x}} \mathrm{dx}$.

$$
\text { Answer: } \int_{0}^{9} \frac{1}{\sqrt{x}} d x=6
$$

[^0]Example $5 \quad$ Find the average value of $y=x^{-1 / 3}$ for $0 \leq x \leq 8$ and give a geometric interpretation of the result.
Answer: [Average value] $=\frac{3}{4}$ - The area of region A is equal to the area of region B in Figure A5.

Figure A5

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ ashenk/: \ddagger
Section 8.6: Examples 1-5

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 7.7 of Calculus by Hughes-Hallett et al

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

