## Math 10B. Lecture Examples.

## Section 8.2. Applications to geometry<sup> $\dagger$ </sup>

Example 1 The region bounded by the curve  $y = x - x^4$  and the x-axis is rotated about the x-axis. Find the volume of the solid that is generated.

**Answer:** Figures A1a and Figure A1b • [Volume] =  $\frac{1}{9}\pi$ 



Example 2Find the volume of the solid that is generated when the triangle between<br/>the lines  $y = \frac{1}{2}x$  and y = 2x for  $0 \le x \le 2$  is rotated about the x-axis.Answer: Figures A2a and A2b • [Volume] =  $10\pi$ .



 $<sup>^\</sup>dagger {\rm Lecture}$  notes to accompany Section 8.2 of Calculus by Hughes-Hallett et al

Example 3 Find the length of  $y = \frac{2}{3}x^{3/2}$  for  $0 \le x \le 1$ . Answer: [Length] =  $\frac{2}{3}(2^{3/2} - 1)$ 

 $\label{eq:example 4} Express the length of y = e^x \mbox{ for } -1 \leq x \leq 1 \mbox{ as a definite integral.}$ 

 $\textbf{Answer:} [\text{Length}] = \int_{-1}^1 \sqrt{1 + (e^x)^2} \ dx$ 

## Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:<sup>‡</sup> Section 7.2: Examples 1–4

Section 7.5: Example 1

 $<sup>^{\</sup>ddagger}$  The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.