Math 10B. Lecture Examples.

Section 9.1. Sequences^{\dagger}

Example 1 A piece of meat at 30°C is put in a freezer at time n = 0. The temperature of the freezer is 0°C, and the temperature of the meat n hours later is $T = \frac{30}{n+1}$ (Figure 1).

Does the sequence $\left\{\frac{30}{n+1}\right\}_{0}^{\infty}$ as $n \to \infty$ converge? If so, what is its limit?

Answer: $\lim_{n \to \infty} \frac{30}{n+1} = 0$ converges and its limit is 0. (The temperature of the meat approaches the temperature of the freezer as $n \to \infty$.)

Example 2 Figure 2 shows the graph of the population $P = 1000(2^{n/6})$ on day n of a colony of bacteria that consists of 1000 bacteria at n = 0 (a) How long does it take for the population to double? (b) Does the sequence $\left\{1000(2^{n/6})\right\}_{n=0}^{\infty}$ converge?

Answer: (a) The population doubles every 6 days. (b) • $\left\{1000(2^{n/6})\right\}_{n=0}^{\infty}$ diverges.

 $^{^\}dagger {\rm Lecture}$ notes to accompany Section 9.1 of Calculus by Hughes-Hallett et al.

Example 3 Figure 3 shows the graph of the number of days $y = d_n$ in February of year $n \ge 2000$: d_n is 29 for leap years n when n/4 is an integer and is 28 other years. What happens to the sequence $\{d_n\}_{n=2000}^{\infty}$ as $n \to \infty$?

Example 4 Does the sequence $\left\{e^{1/\sqrt{n}}\right\}_{n=1}^{\infty}$ converge or diverge? If it converges, give its limit. **Answer:** The sequence converges and its limit is 1. (The table below shows that the limit is approached relatively slowly.)

n	1	10	100	1000	10,000	100,000
$e^{1/\sqrt{n}} \doteq$	2.7183	1.3719	1.1052	1.0321	1.0101	1.0010

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/~ashenk/:[‡] Section 10.1: Examples 1–5

 $^{^{\}ddagger}$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.