Math 10B. Lecture Examples.

Section 9.5. Power series and intervals of convergence ${ }^{\dagger}$

Example 1 Find the radius of convergece of the power series

$$
\sum_{j=1}^{\infty} \frac{(-1)^{j+1}}{j} x^{j}=x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}-\frac{1}{4} x^{4}+\cdots
$$

Answer: [Radius of convergence] $=1$ (Figure A1a shows the partial sums for $x=0.75$, where the series converges,
and Figure A1b shows the partial sums for $x=1.2$, where the series diverges.)

Figure A1a

Figure A1B

Example $2 \quad$ What is the radius of convergence of $\sum_{n=0}^{\infty} \frac{1}{(2 n)!} x^{n}$?
Answer: The radius of convergence R is ∞.
Example 3 Find the radius of convergence of $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{3} 3^{n}}$.
Answer: The radius of convergence R is 3 .
Example 4 What is the radius of convergence of $\sum_{n=0}^{\infty} n!x^{2 n} ?$
Answer: The radius of convergence R is 0 .

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: \ddagger
Section 10.7: Examples 1-4

[^0]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 9.5 of Calculus by Hughes-Hallett et al.
 \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

