Exam 2, July 25, 2011.

Name
Work alone and use no books, notes, or calculators. Show your work with your answers on $8.5 " \times 11$ "paper and staple the pages to the exam when you turn them in. Justify your conclusions.

Problem 1 (15 points) Find the derivatives
(a) $y^{\prime}(x)$ for $y(x)=\ln \left(x^{3}+x^{2}\right)$,
(b) $\frac{d}{d x}\left(\cos ^{2} x\right)$, and
(c) $f^{\prime}(2)$ for $f(x)=\tan ^{-1} x$ (the inverse tangent function).

Problem 2 (10 points) Give an equation of the tangent line to $y=\sqrt{x^{2}+9}$ at $x=4$.
Problem 3 (10 points) At a particular moment on a trip you are driving 60 miles per hour and your car is using gas at the rate of $\frac{1}{20}$ gallons per mile. At what rate are you using gasoline, measured in gallons per hour?

Problem 4 (10 points) A rectangular box with a square base and no top, as in Figure 1, is to be constructed to have a volume of $\frac{1}{2}$ cubic foot. Find the dimensions of the box that requires the least amount of material for the bottom and four sides.

FIGURE 1

FIGURE 2

Problem 5 A six-foot-tall man is walking away from an eighteen-foot-high post with a lamp at its top (Figure 2). (a) (5 points) Find an equation relating his distance x from the post and the length y of his shadow. (b) (5 points) How fast is his shadow growing if he is walking two miles per hour?

Problem 6 (10 points) What is the rate of change of the width of a cube with respect to time at a moment when it is two inches wide and its volume is increasing 36 cubic inches per minute? $\left(V=w^{3}\right)$
Problem 7 (a) (3 points) Find the limits of $f(x)=x^{3}-3 x^{2}+4$ as $x \rightarrow \pm \infty$. (b) (4 points) Find the open intervals on which f is increasing and decreasing and its local and global maxima and minima. (c) (4 points) Find the open intervals on which the graph of f is concave up and concave down and the inflection points of the graph. (d) (4 points) Draw the graph of f.
Problem 8 (10 points) Find (a) $\lim _{x \rightarrow \pi}\left(\frac{\sin x}{\sin (2 x)}\right)$ and (b) $\lim _{x \rightarrow \infty}\left(\frac{\ln x}{x^{2}+1}\right)$.
Scores:

1	2	3	4	5	6	7	8	Total

