Exam 2 Solutions

1) (a) Using the formula $\frac{d}{d u} \ln u=\frac{1}{u}$ and the Chain Rule,

$$
y^{\prime}(x)=\frac{1}{x^{3}+x^{2}} \cdot \frac{d}{d x}\left(x^{3}+x^{2}\right)=\frac{3 x^{2}+2 x}{x^{3}+x^{2}} .
$$

(b) Using the formula $\frac{d}{d u} \cos u=-\sin u$ and the Chain Rule,

$$
\frac{d}{d x}\left(\cos ^{2} x\right)=2 \cos x \cdot \frac{d}{d x}(\cos x)=2 \cos x(-\sin x)=-2 \cos x \sin x
$$

(c) Since $\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$,

$$
f^{\prime}(2)=\frac{1}{1+2^{2}}=\frac{1}{5} .
$$

2) The equation of the tangent line at $x=4$ is $y=y(4)+y^{\prime}(4)(x-4)$.

$$
y(4)=\sqrt{4^{2}+9}=\sqrt{25}=5 .
$$

To compute y^{\prime} we use the Chain Rule and the Power Rule.

$$
y^{\prime}=\frac{1}{2}\left(x^{2}+9\right)^{-1 / 2} \frac{d}{d x}\left(x^{2}+9\right)=\frac{1}{2}\left(x^{2}+9\right)^{-1 / 2}(2 x)=\frac{x}{\sqrt{x^{2}+9}} .
$$

Therefore $y^{\prime}(4)=\frac{4}{\sqrt{4^{2}+9}}=\frac{4}{\sqrt{25}}=\frac{4}{5}$ and the equation of the tangent line to y at $x=4$ is

$$
y=5+\frac{4}{5}(x-4) .
$$

3) We are given that we are driving 60 miles per hour and the car is using gas at $\frac{1}{20}$ gallons per mile. Let s be the distance traveled and let G be the amount of gas used on the trip. Then the rate at which we are using gasoline is

$$
\frac{d G}{d t}=\frac{d G}{d s} \cdot \frac{d s}{d t}=\frac{1 \text { gallon }}{20 \text { miles }} \cdot \frac{60 \text { miles }}{1 \text { hour }}=3 \text { gallons per hour. }
$$

4) The volume of the box is $\frac{1}{2}$ cubic foot so that $\frac{1}{2}=w^{2} h$. Solving this equation for h gives $\frac{1}{2 w^{2}}=h$. The total amount of material needed is the total area of the bottom and sides of the box. If A represents the total area then using the equation $\frac{1}{2 w^{2}}=h$ we can write

$$
A=w^{2}+4 w h=w^{2}+4 w\left(\frac{1}{2 w^{2}}\right)=w^{2}+\frac{2}{w} .
$$

Now we optimize $A=A(w)$ for $w>0$.

$$
A^{\prime}(w)=2 w-2 w^{-2}=2 w-\frac{2}{w^{2}} .
$$

To find the critical points of A we solve $A^{\prime}(w)=0$.

$$
\begin{aligned}
2 w-\frac{2}{w^{2}} & =0 \\
2 w & =\frac{2}{w^{2}} \\
w & =\frac{1}{w^{2}} \\
w^{3} & =1 \\
w & =1
\end{aligned}
$$

Thus $w=1$ is the only critical point of A. It remains to verify that $A(1)$ is indeed the absolute minimum of A. We will show that A is decreasing on $(0,1)$ and increasing on $(1, \infty)$ which implies $A(1)$ is the absolute maximum of A. Since $w=1$ is the only critical point of A, we partition the interval $(0, \infty)$ into intervals $(0,1)$ and $(1, \infty)$. Choose test point $\frac{1}{2}$ from the interval $(0,1)$ and test point 2 from the interval $(1, \infty)$. It is easy to check $A^{\prime}\left(\frac{1}{2}\right)<0$ and $A^{\prime}(2)>0$ and so A is decreasing on $(0,1)$ and increasing on $(1, \infty)$.

The desired dimensions are $w=1$ foot and $h=\frac{1}{2(1)^{2}}=\frac{1}{2}$ foot.
5) (a) Using the fact that similar triangles have equal base to height ratios,

$$
\begin{equation*}
\frac{x+y}{18}=\frac{y}{6} . \tag{1}
\end{equation*}
$$

(b) We are asked to find $\frac{d y}{d t}$ if $\frac{d x}{d t}=2$. Simplifying (1) gives

$$
\begin{aligned}
6 x+6 y & =18 y \\
6 x & =12 y \\
x & =2 y .
\end{aligned}
$$

Differentiate both sides of this equation with respect to t to get $\frac{d x}{d t}=2 \frac{d y}{d t}$. Upon substituting $\frac{d x}{d t}=2$ we get

$$
2=2 \frac{d y}{d t} .
$$

The shadow is growing at 1 mile per hour when the man is walking 2 miles per hour.
6) Differentiate both sides of $V=w^{3}$ with respect to time t to obtain

$$
\begin{equation*}
\frac{d V}{d t}=3 w^{2} \frac{d w}{d t} . \tag{2}
\end{equation*}
$$

We are asked to find $\frac{d w}{d t}$ when $w=2$ and $\frac{d V}{d t}=36$. Substituting these values in to (2) gives

$$
36=3(2)^{2} \frac{d w}{d t} .
$$

Therefore $\frac{d w}{d t}=\frac{36}{3 \cdot(2)^{2}}=3$ and the width is increasing at 3 inches per minute when the width is 2 inches and the volume is increasing at 36 cubic inches per minute.
7) (a) Since f is an odd degree polynomial with positive leading coefficient,

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty \text { and } \lim _{x \rightarrow \infty} f(x)=\infty
$$

(b) In order to determine the intervals of increasing and decreasing we need to determine the sign of f^{\prime}.

$$
f^{\prime}(x)=3 x^{2}-6 x .
$$

Now find the critical points of f by solving $f^{\prime}(x)=0$.

$$
0=3 x^{2}-6 x=3 x(x-2) .
$$

$f^{\prime}(x)=0$ when $x=0$ or $x=2$. Partition the real line into the intervals $(-\infty, 0),(0,2)$, and $(2, \infty)$. Choose test point -1 from $(-\infty, 0)$, test point 1 from $(0,2)$, and test point 3 from $(2, \infty)$.
$f^{\prime}(-1)=3(-1)^{2}-6(-1)>0 \quad f^{\prime}(1)=3(1)^{2}-6(1)<0 \quad f^{\prime}(3)=3(3)^{2}-6(3)>0$.
Therefore f is increasing on $(-\infty, 0)$ and $(2, \infty)$, and f is decreasing on $(0,2)$.
(c) In order to determine the inflection points and concavity we need to determine the sign of $f^{\prime \prime}$.

$$
f^{\prime \prime}(x)=6 x-6 .
$$

Solving $f^{\prime \prime}(x)=0$ gives $x=1$ and it is clear that $f^{\prime \prime}(x)>0$ if $x>1$ and $f^{\prime \prime}(x)<0$ if $x<-1$. Since there is a change in sign of $f^{\prime \prime}$ at $x=1, x=1$ is an inflection point. f is concave up on $(1, \infty)$ and concave down on $(-\infty, 1)$.
(d)

8) (a) Since $y=\sin x$ is continuous, $\lim _{x \rightarrow \pi} \sin x=\sin \pi=0$ and $\lim _{x \rightarrow \pi} \sin x=\sin (2 \pi)=0$. The limit is an indeterminate form $\frac{0}{0}$. Applying l'Hospital's Rule,

$$
\begin{aligned}
\lim _{x \rightarrow \pi}\left(\frac{\sin x}{\sin (2 x)}\right) & =\lim _{x \rightarrow \pi}\left(\frac{\frac{d}{d x} \sin x}{\frac{d}{d x} \sin (2 x)}\right)=\lim _{x \rightarrow \pi}\left(\frac{\cos x}{\cos (2 x) \frac{d}{d x}(2 x)}\right) \\
& =\lim _{x \rightarrow \pi}\left(\frac{\cos x}{\cos (2 x) \cdot 2}\right)=\frac{\cos \pi}{2 \cos (2 \pi)} \\
& =\frac{-1}{2 \cdot 1}=-\frac{1}{2}
\end{aligned}
$$

(b) $\lim _{x \rightarrow \infty} \ln x=\infty$ and $\lim _{x \rightarrow \infty} x^{2}+1=\infty$ therefore the limit is an indeterminate form $\frac{\infty}{\infty}$. As in (a) we apply l'Hospital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow \infty}\left(\frac{\ln x}{x^{2}+1}\right) & =\lim _{x \rightarrow \infty}\left(\frac{\frac{d}{d x} \ln x}{\frac{d}{d x} x^{2}}\right) \\
& =\lim _{x \rightarrow \infty} \frac{1 / x}{2 x}=\lim _{x \rightarrow \infty} \frac{1}{2 x^{2}}=0
\end{aligned}
$$

