Exam 2 Solutions

1) (a) Using the formula $\frac{d}{du} \ln u = \frac{1}{u}$ and the Chain Rule,

$$y'(x) = \frac{1}{x^3 + x^2} \cdot \frac{d}{dx}(x^3 + x^2) = \frac{3x^2 + 2x}{x^3 + x^2}.$$

(b) Using the formula $\frac{d}{du}\cos u = -\sin u$ and the Chain Rule,

$$\frac{d}{dx}(\cos^2 x) = 2\cos x \cdot \frac{d}{dx}(\cos x) = 2\cos x(-\sin x) = -2\cos x\sin x$$

(c) Since $\frac{d}{dx} \tan^{-1} x = \frac{1}{1+x^2}$, $f'(2) = \frac{1}{1+2^2} = \frac{1}{5}$.

2) The equation of the tangent line at x = 4 is y = y(4) + y'(4)(x - 4).

$$y(4) = \sqrt{4^2 + 9} = \sqrt{25} = 5.$$

To compute y' we use the Chain Rule and the Power Rule.

$$y' = \frac{1}{2}(x^2 + 9)^{-1/2}\frac{d}{dx}(x^2 + 9) = \frac{1}{2}(x^2 + 9)^{-1/2}(2x) = \frac{x}{\sqrt{x^2 + 9}}$$

Therefore $y'(4) = \frac{4}{\sqrt{4^2+9}} = \frac{4}{\sqrt{25}} = \frac{4}{5}$ and the equation of the tangent line to y at x = 4 is

$$y = 5 + \frac{4}{5}(x - 4).$$

3) We are given that we are driving 60 miles per hour and the car is using gas at $\frac{1}{20}$ gallons per mile. Let s be the distance traveled and let G be the amount of gas used on the trip. Then the rate at which we are using gasoline is

$$\frac{dG}{dt} = \frac{dG}{ds} \cdot \frac{ds}{dt} = \frac{1 \text{ gallon}}{20 \text{ miles}} \cdot \frac{60 \text{ miles}}{1 \text{ hour}} = 3 \text{ gallons per hour.}$$

4) The volume of the box is $\frac{1}{2}$ cubic foot so that $\frac{1}{2} = w^2 h$. Solving this equation for h gives $\frac{1}{2w^2} = h$. The total amount of material needed is the total area of the bottom and sides of the box. If A represents the total area then using the equation $\frac{1}{2w^2} = h$ we can write

$$A = w^{2} + 4wh = w^{2} + 4w\left(\frac{1}{2w^{2}}\right) = w^{2} + \frac{2}{w}.$$

Now we optimize A = A(w) for w > 0.

$$A'(w) = 2w - 2w^{-2} = 2w - \frac{2}{w^2}.$$

To find the critical points of A we solve A'(w) = 0.

$$2w - \frac{2}{w^2} = 0$$

$$2w = \frac{2}{w^2}$$

$$w = \frac{1}{w^2}$$

$$w^3 = 1$$

$$w = 1.$$

Thus w = 1 is the only critical point of A. It remains to verify that A(1) is indeed the absolute minimum of A. We will show that A is decreasing on (0, 1) and increasing on $(1, \infty)$ which implies A(1) is the absolute maximum of A. Since w = 1 is the only critical point of A, we partition the interval $(0, \infty)$ into intervals (0, 1) and $(1, \infty)$. Choose test point $\frac{1}{2}$ from the interval (0, 1) and test point 2 from the interval $(1, \infty)$. It is easy to check $A'(\frac{1}{2}) < 0$ and A'(2) > 0 and so A is decreasing on (0, 1) and increasing on $(1, \infty)$. The desired dimensions are w = 1 foot and $h = \frac{1}{2(1)^2} = \frac{1}{2}$ foot.

5) (a) Using the fact that similar triangles have equal base to height ratios,

$$\frac{x+y}{18} = \frac{y}{6}.$$
 (1)

(b) We are asked to find $\frac{dy}{dt}$ if $\frac{dx}{dt} = 2$. Simplifying (1) gives

$$6x + 6y = 18y$$

$$6x = 12y$$

$$x = 2y.$$

Differentiate both sides of this equation with respect to t to get $\frac{dx}{dt} = 2\frac{dy}{dt}$. Upon substituting $\frac{dx}{dt} = 2$ we get

$$2 = 2\frac{dy}{dt}.$$

The shadow is growing at 1 mile per hour when the man is walking 2 miles per hour.

6) Differentiate both sides of $V = w^3$ with respect to time t to obtain

$$\frac{dV}{dt} = 3w^2 \frac{dw}{dt}.$$
(2)

We are asked to find $\frac{dw}{dt}$ when w = 2 and $\frac{dV}{dt} = 36$. Substituting these values in to (2) gives

$$36 = 3(2)^2 \frac{dw}{dt}.$$

Therefore $\frac{dw}{dt} = \frac{36}{3 \cdot (2)^2} = 3$ and the width is increasing at 3 inches per minute when the width is 2 inches and the volume is increasing at 36 cubic inches per minute.

7) (a) Since f is an odd degree polynomial with positive leading coefficient,

$$\lim_{x \to -\infty} f(x) = -\infty \text{ and } \lim_{x \to \infty} f(x) = \infty.$$

(b) In order to determine the intervals of increasing and decreasing we need to determine the sign of f'.

$$f'(x) = 3x^2 - 6x$$

Now find the critical points of f by solving f'(x) = 0.

$$0 = 3x^2 - 6x = 3x(x - 2).$$

f'(x) = 0 when x = 0 or x = 2. Partition the real line into the intervals $(-\infty, 0)$, (0, 2), and $(2, \infty)$. Choose test point -1 from $(-\infty, 0)$, test point 1 from (0, 2), and test point 3 from $(2, \infty)$.

$$f'(-1) = 3(-1)^2 - 6(-1) > 0 \qquad f'(1) = 3(1)^2 - 6(1) < 0 \qquad f'(3) = 3(3)^2 - 6(3) > 0.$$

Therefore f is increasing on $(-\infty, 0)$ and $(2, \infty)$, and f is decreasing on (0, 2).

(c) In order to determine the inflection points and concavity we need to determine the sign of f''.

$$f''(x) = 6x - 6.$$

Solving f''(x) = 0 gives x = 1 and it is clear that f''(x) > 0 if x > 1 and f''(x) < 0 if x < -1. Since there is a change in sign of f'' at x = 1, x = 1 is an inflection point. f is concave up on $(1, \infty)$ and concave down on $(-\infty, 1)$.

(d)

8) (a) Since $y = \sin x$ is continuous, $\lim_{x \to \pi} \sin x = \sin \pi = 0$ and $\lim_{x \to \pi} \sin x = \sin(2\pi) = 0$. The limit is an indeterminate form $\frac{0}{0}$. Applying l'Hospital's Rule,

$$\lim_{x \to \pi} \left(\frac{\sin x}{\sin(2x)} \right) = \lim_{x \to \pi} \left(\frac{\frac{d}{dx} \sin x}{\frac{d}{dx} \sin(2x)} \right) = \lim_{x \to \pi} \left(\frac{\cos x}{\cos(2x) \frac{d}{dx} (2x)} \right)$$
$$= \lim_{x \to \pi} \left(\frac{\cos x}{\cos(2x) \cdot 2} \right) = \frac{\cos \pi}{2 \cos(2\pi)}$$
$$= \frac{-1}{2 \cdot 1} = -\frac{1}{2}.$$

(b) $\lim_{x\to\infty} \ln x = \infty$ and $\lim_{x\to\infty} x^2 + 1 = \infty$ therefore the limit is an indeterminate form $\frac{\infty}{\infty}$. As in (a) we apply l'Hospital's Rule.

$$\lim_{x \to \infty} \left(\frac{\ln x}{x^2 + 1} \right) = \lim_{x \to \infty} \left(\frac{\frac{d}{dx} \ln x}{\frac{d}{dx} x^2} \right)$$
$$= \lim_{x \to \infty} \frac{1/x}{2x} = \lim_{x \to \infty} \frac{1}{2x^2} = 0$$