Homework 2, Part 1

Section 3.2 of Rogawski: 5, 25, 40 (skip 21), unless you did these on Homework 1
Section 3.3 of Rogawski: 5, 7, 13, 15, 21, 23
Additional exercises:
Exercise 1 Find $\frac{d}{d x}\left[\left(1+3 x-x^{2}\right)\left(x^{2}-5\right)\right]$.
Answer: $\left(1+3 x-x^{2}\right)(2 x)+\left(x^{2}-5\right)(3-2 x)$
Exercise 2 What is $\frac{d}{d x}\left(\frac{x^{2}+x}{x^{2}-2}\right)$?
Answer: $\frac{-x^{2}-4 x-2}{\left(x^{2}-2\right)^{2}}$
Exercise 3 What is $f^{\prime}(10)$ if $f(x)=g(x) h(x), g(10)=-4, h(10)=560, g^{\prime}(10)=0$, and $h^{\prime}(10)=35$?
Answer: -140
Exercise 4 Find $R^{\prime}(1)$ where $R(s)=\frac{P(s)}{Q(s)}, P(1)=13, Q(1)=-2, P^{\prime}(1)=7$, and $Q^{\prime}(1)=-4$.
Answer: $\frac{19}{2}$
Exercise 5 At the beginning of 1991 there were 2.1 million farms in the United States with an average size of 467 acres per farm; the number of farms was decreasing 0.035 million farms per year; and the average size was increasing 7 acres per farm per year. What was the total acreage of farms and at what rate was it increasing or decreasing at the beginning of 1991?
Answer: [Total acreage] $\doteq 980.7$ million acres - The total acreage was decreasing 1.645 million acres per year.
Exercise 6 Figures 1 and 2 give the number $N=N(t)$ (millions) of MasterCard and Visa accounts and the total outstanding debt $D=D(t)$ (million dollars) in the U.S. as functions of the year. What were (a) the approximate average debt per credit card and (b) the rate of change with respect to time of the average debt per credit card at the beginning of 1988 ?

FIGURE 1

FIGURE 2

Answer: (a) [Average debt per card] ≈ 960 dollars per credit card (b) [The rate of change with respect to time of the average debt per credit card at the beginning of 1988$] \approx 102.40$ dollars per credit card per year

Exercise 7 Give an equation of the tangent line to $y=\left(1+x-x^{4}\right)\left(1-x+x^{3}\right)$ at $x=1$. Then generate the curve and tangent line on your calculator or computer.
Answer: Tangent line : $y=1-(x-1)$ - Figure A7

Figure A7

Exercise 8 Imagine that your investments are in the stock market, in real estate, and in livestock. Imagine that on April 15 the value of your stock-market investments is 1.2 million dollars and is rising at the rate of 0.05 million dollars per year; the value of your real estate is 2.1 million dollars and is falling 0.1 million dollars per year; and the value of your livestock is 0.5 million dollars and is rising 0.05 million dollars per year. (a) What is the total value of your investments on April 15? (b) What percent of your investments is in real estate on April 15? (c) At what rate is the total value of your investments increasing or decreasing on April 15? (d) At what rate is the percent of your investments in real estate increasing or decreasing on April 15?
Answer: (a) [Total value] $=1.2+2.1+0.5=3.8$ million dollars
(b) [Percent invested in real estate] $\doteq 55.26 \%$
(c) [Rate of change of the total value] $=0$ million dollars per year
(d) The percentage invested in real estate is decreasing about 2.63% per year.

