Math 20A, Homework 4, Part 2

Rogawski Section 4.7: 1, 5, 9, 11, 15, 43

Additional exercises

Exercise 1 (a) Give equations of the tangent lines to $y=\sqrt{x}-1$ and to $y=x^{2}-1$ at $x=1$. (b) Use approximations by the tangent lines in part (a) to predict $\lim _{x \rightarrow 1} \frac{\sqrt{x}-1}{x^{2}-1}$. (c) Use l'Hopital's Rule to find the limit.
Answer: (a) Tangent line to $y=x^{1 / 2}-1$ at $x=1: y=\frac{1}{2}(x-1)$ - Tangent line to $y=x^{2}-1$ at $x=1: y=2(x-1)$
(b) Prediction: $\frac{x^{1 / 2}-1}{x^{2}-1} \approx \frac{\frac{1}{2}(x-1)}{2(x-1)}=\frac{1}{4}$ near $x=1$ - Prediction: $\lim _{x \rightarrow 1} \frac{x^{1 / 2}-1}{x^{2}-1}=\frac{1}{4}$
(c) $\lim _{x \rightarrow 1} \frac{x^{1 / 2}-1}{x^{2}-1}=\lim _{x \rightarrow 1} \frac{\frac{1}{2} x^{-1 / 2}}{2 x}=\frac{\frac{1}{2}}{2}=\frac{1}{4}$

Exercise 2 Find $\lim _{x \rightarrow 0} \frac{x^{3}+6 x^{2}-x}{x^{4}+3 x}$ (a) by factoring the numerator and denominator and (b) by using l'Hopital's Rule.
Answer: (a) For $x \neq 0, \frac{x^{3}+6 x^{2}-x}{x^{4}+3 x}=\frac{x\left(x^{2}+6 x-1\right)}{x\left(x^{3}+3\right)}=\frac{x^{2}+6 x-1}{x^{3}+3}$ -
$\lim _{x \rightarrow 0} \frac{x^{3}+6 x^{2}-x}{x^{4}+3 x}=\lim _{x \rightarrow 0} \frac{x^{2}+6 x-1}{x^{3}+3}=-\frac{1}{3}$
(b) $\lim _{x \rightarrow 0} \frac{x^{3}+6 x^{2}-x}{x^{4}+3 x}=\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(x^{3}+6 x^{2}-x\right)}{\frac{d}{d x}\left(x^{4}+3 x\right)}=\lim _{x \rightarrow 0} \frac{3 x^{2}+6 x-1}{4 x^{3}+3}=-\frac{1}{3}$

Exercise 3 Find $\lim _{x \rightarrow \infty} \frac{e^{x}+5}{e^{-x}+10}$.
Answer: $\lim _{x \rightarrow \infty} \frac{e^{x}+5}{e^{-x}+10}=\infty$ (l'Hopital's Rule is not needed.)
Exercise 4 Use l'Hopital's Rule and the First-Derivative Test to draw the curve $y=x^{2} e^{-x / 2}$. Use the window $-2 \leq x \leq 10,-1 \leq y \leq 5$.
Answer: Properties: $y(x)$ is defined and continuous for all x. - $y \rightarrow \infty$ as $x \rightarrow-\infty \bullet y \rightarrow 0$ as $x \rightarrow \infty$ by L'Hopital's Rule - $y(x)$ is decreasing on $(-\infty, 0]$ and $[4, \infty)$ and increasing on $[0,4]$. - Global minimum of 0 at $x=1$ - Local maximum of $16 e^{-2}$ at $x=4$ - Figure 1

FIGURE 1

Exercise 5 Use l'Hopital's Rule and the First-Derivative Test to draw the graph of $y=\frac{\ln x}{x}$. Use the window $-2 \leq x \leq 10,-1 \leq y \leq 0.75$.
Answer: Properties: $y(x)$ is defined and continuous on $(0, \infty)$. - $y \rightarrow-\infty$ as $x \rightarrow 0^{+} \bullet y(x) \rightarrow 0$ as $x \rightarrow \infty$ by l'Hopital's Rule • $y(x)$ is increasing on (0.e] and decreasing on $[e, \infty) . \bullet$ Global maximum of $\frac{1}{e}$ at $x=e \bullet$ Figure 2

FIGURE 2

