Math 20A, Homework 4, Part 2

Rogawski Section 4.7: 1, 5, 9, 11, 15, 43

Additional exercises

(a) Give equations of the tangent lines to $y = \sqrt{x} - 1$ and to $y = x^2 - 1$ at x = 1. (b) Use approximations Exercise 1 by the tangent lines in part (a) to predict $\lim_{x \to 1} \frac{\sqrt{x-1}}{x^2-1}$. (c) Use l'Hopital's Rule to find the limit. Answer: (a) Tangent line to $y = x^{1/2} - 1$ at x = 1: $y = \frac{1}{2}(x - 1)$ • Tangent line to $y = x^2 - 1$ at x = 1: y = 2(x - 1)(b) Prediction: $\frac{x^{1/2} - 1}{x^2 - 1} \approx \frac{\frac{1}{2}(x - 1)}{2(x - 1)} = \frac{1}{4}$ near x = 1 • Prediction: $\lim_{x \to 1} \frac{x^{1/2} - 1}{x^2 - 1} = \frac{1}{4}$ (c) $\lim_{x \to 1} \frac{x^{1/2} - 1}{x^2 - 1} = \lim_{x \to 1} \frac{\frac{1}{2}x^{-1/2}}{2x} = \frac{\frac{1}{2}}{2} = \frac{1}{4}$

Exercise 2 Find $\lim_{x\to 0} \frac{x^3 + 6x^2 - x}{x^4 + 3x}$ (a) by factoring the numerator and denominator and (b) by using l'Hopital's

Answer: (a) For
$$x \neq 0$$
, $\frac{x^3 + 6x^2 - x}{x^4 + 3x} = \frac{x(x^2 + 6x - 1)}{x(x^3 + 3)} = \frac{x^2 + 6x - 1}{x^3 + 3} \bullet$

$$\lim_{x \to 0} \frac{x^3 + 6x^2 - x}{x^4 + 3x} = \lim_{x \to 0} \frac{x^2 + 6x - 1}{x^3 + 3} = -\frac{1}{3}$$
(b) $\lim_{x \to 0} \frac{x^3 + 6x^2 - x}{x^4 + 3x} = \lim_{x \to 0} \frac{\frac{d}{dx}(x^3 + 6x^2 - x)}{\frac{d}{dx}(x^4 + 3x)} = \lim_{x \to 0} \frac{3x^2 + 6x - 1}{4x^3 + 3} = -\frac{1}{3}$

- **Exercise 3** Find $\lim_{x \to \infty} \frac{e^x + 5}{e^{-x} + 10}$ Answer: $\lim_{x \to \infty} \frac{e^x + 5}{e^{-x} + 10} = \infty$ (l'Hopital's Rule is not needed.)
- *Exercise 4* Use l'Hopital's Rule and the First-Derivative Test to draw the curve $y = x^2 e^{-x/2}$. Use the window $-2 \le x \le 10, -1 \le y \le 5$.

Answer: Properties: y(x) is defined and continuous for all x. • $y \to \infty$ as $x \to -\infty$ • $y \to 0$ as $x \to \infty$ by L'Hopital's Rule • y(x) is decreasing on $(-\infty, 0]$ and $[4, \infty)$ and increasing on [0, 4]. • Global minimum of 0 at x = 1 • Local maximum of $16e^{-2}$ at x = 4 • Figure 1

FIGURE 1

Exercise 5 Use l'Hopital's Rule and the First-Derivative Test to draw the graph of $y = \frac{\ln x}{x}$. Use the window $-2 \le x \le 10, -1 \le y \le 0.75$. Answer: Properties: y(x) is defined and continuous on $(0, \infty)$. • $y \to -\infty$ as $x \to 0^+$ • $y(x) \to 0$ as $x \to \infty$ by l'Hopital's Rule • y(x) is increasing on (0, e] and decreasing on $[e, \infty)$. • Global maximum of $\frac{1}{e}$ at x = e • Figure 2

FIGURE 2