Math 20A. Lecture 1.

Read Section 0.1 of my planned e-Calculus book. There is a link to it on the course web page, http://www.math.ucsd.edu/ ashenk/.

Inequalities

Example 1 Solve the inequality $5-2 x \leq 9$ for x.
Answer: $x \geq-2$
Example 2 Solve $\left|x^{3}-1\right|>2$.
Answer: $x<-1$ or $x>\sqrt[3]{3}$

Translation, magnification, contraction

Example 3 Explain the shape of the graph of the function $y=x^{2}-2 x+3$ in Figure 1 by completing the square.

FIGURE 1

FIGURE 2

Answer: $y=(x-1)^{2}+2$ is $y=x^{2}$ translated 1 unit to the right and then raised 2 units.
Example 4 The curve drawn with a heavy line in Figure 2 is the graph of $y=G(x)$. Is the other curve the graph of $y=\frac{1}{2} G(2 x), y=\frac{1}{2} G\left(\frac{1}{2} x\right), y=\frac{1}{2} G(x)$, or $y=2 G(2 x)$?
Answer: The curve drawn with a fine line has the equation $y=2 G(2 x)$.

Exponential functions

Example 5 Explain the shape of the curve $y=5+3\left(2^{x}\right)$ in Figure 3.

FIGURE 3

Answer: The curve $y=5+3\left(2^{x}\right)$ is $y=2^{x}$ magnified vertically by a factor of 3 and then translated up 5 units. - Also $y(0)=5+3\left(2^{0}\right)=8, y(2)=5+3\left(2^{2}\right)=17$, and $y=5$ is a horizontal asymptote.

The natural exponential function $y=e^{x}$ is defined by

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \quad \text { or } \quad e^{x}=\lim _{n \rightarrow \infty}\left(1+\frac{x}{n}\right)^{n}
$$

Its graph and the graph of its inverse, the natural logarithm $y=\ln x$, are in Figure 4. The number e has the decimal value $e=2.71828183 \ldots$.

FIGURE 4

Example 6 Solve the equation $e^{3 x}=100$ for x.
Answer: $x=\frac{1}{3} \ln (100)$

Trigonometric functions

In calculus, angles are measured in radians. To find the radian measure of a positive (counterclockwise) angle x, put its vertex at the center of a circle of radius 1 as in Figure 5. The radian measure of the angle is the length of the arc it subtends (sweeps out) on the circle as it is generated (including all revolutions if $x>2 \pi$). The radian measure of a negative (clockwise) angle is the negative of the length of the arc it subtends.

Recall the definitions of $\cos x, \sin x$, and $\tan x$ from trigonometry: If x is a positive acute angle $\left(0<x<\frac{1}{2} \pi\right)$ in a right triangle then $\cos x$ equals the length of the adjacent side divided by the length of the hypotenuse, $\sin x$ equals the length of the opposite side divided by the length of the hypotenuse, and $\tan x$ equals the length of the opposite side divided by the length of the adjacent side.

To find $\cos x$ and $\sin x$ for a general angle x, let (u, v) be the coordinates in a $u v$-plane of the point a positive distance r from the origin on the terminal side of the angle, as in Figure 6. Then

$$
\cos x=\frac{u}{r}, \quad \sin x=\frac{v}{r}, \quad \tan x=\frac{v}{u} .
$$

(The tangent is not defined if the point is on the v-axis and $u=0$.) Notice that this is the definition from trigonometry if x is a positive acute angle.

FIGURE 5

FIGURE 6

Choosing $r=1$ in this definition gives a way to relate $\cos x$ and $\sin x$ to the unit circle (the circle of radius 1 with center at the origin) in the $u v$-plane (Figure 7): The intersection of the terminal side of the angle with the circle has coordinates $(\cos x, \sin x)$.

FIGURE 7

This formulation of the definition can be used to show that the graphs $y=\cos x$ and $y=\sin x$ have the shapes in Figures 8 and 9.

FIGURE 8

FIGURE 9

The tangent function can be defined in terms of the sine and cosine by the formula

$$
\tan x=\frac{\sin x}{\cos x}
$$

for all x such that $\cos x \neq 0$. It also has the following geometric definition using the unit circle.
Draw the terminal side of the angle x and the vertical line $u=1$ at the right of the unit circle as in Figures 10, 11, and 12. The vertical, v-coordinate of the intersection of these lines is $\tan x$ because the horizontal coordinate is $u=1$ so that $\tan x=v / u=v$. (The function $y=\tan x$ is called the "tangent" function because the line $u=1$ in Figures 10, 11, and 12 is tangent to the unit circle.)

FIGURE 10

FIGURE 11

FIGURE 12

This definition can be used to show that the graph $y=\tan x$ has the shape in Figure 13. Notice that $\tan x$ has period π, while $\cos x$ and $\sin x$ have period 2π.

Interactive Examples on the course web page

Section 0.1: 1-5
Section 0.2: 1-5
Section 0.3: 1-8

