
Math 20A. Lecture 10.

�eorem 1 (L’Hopital’s Rule) Suppose that f ′(x) and g′(x) exist with g′(x) ≠ 0 for x ≠ x0 in an open
interval containing x0, that either f (x) and g(x) both tend to 0 or both tend to ±∞ as x → x0,
and that f ′(x)/g′(x) → L as x → x0. �en

lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
= L.

In this theorem, Lmay be a number or ±∞ and the condition x → x0 may be replaced by x →∞ or
x → −∞ with appropriate changes in the intervals used in the de�nition.

(�is result is called L’Hopital’s rule because it was �rst published in Analyse des In�niments Petits pour
l’Intelligence des Lignes Courbes by the Marquis G. F. A. de L’Hopital in 1696.�is book was one of the �rst
textbooks on di�erential calculus. �e result, however, was not proved by de l’Hopital but by another
mathematician, Jean Bernoulli (brother of Jacob, father of Daniel), who received a regular salary from the
marquis in exchange for the rights to Bernoulli’s mathematical discoveries.)

�e quotient
f (x)

g(x)
in the theorem is called an indeterminate form of type

0

0
if f (x) and g(x)

tend to zero and an indeterminate form of type
∞

∞
if f (x) and g(x) tend to ±∞.

Example 1 Use l’Hopital’s Rule to �nd the limit lim
x→1

sin(2πx)

x2 − 1
.

Answer: y = sin(2πx) → 0 and y = x2 − 1 → 0 as x → 1. ● �e quotient
sin(2πx)

x2 − 1
is an indeterminate form of

type
0

0
as x → 1. ● lim

x→1

sin(2πx)

x2 − 1
= lim

x→1

d

dx
[sin(2πx)]
d

dx
(x2 − 1)

= lim
x→1

cos(2πx) d

dx
(2πx)

2x
= lim

x→1

2π cos(2πx)
2x

=
2π

2
= π

L’Hopital’s Rule has a special geometric interpretation in cases where the functions f and g have
contunuous derivatives at the limiting value x0 of x and g′(x0) is not zero. �en the tangent lines

y = f (x0) + f ′(x0)(x − x0) and y = g(x0)(x − x0) approximate the graphs closely near x0 and f (x0) and
g(x0) are zero, so that. for x near x0,

f (x)≈ f ′(x0)(x − x0)

g(x) ≈ g′(x0)(x − x0).

�ese approximations are accurate enough so that

lim
x→x0

f (x)

g(x)
= lim

x→x0

f ′(x0)(x − x0)

g′(x0)(x − x0)
=

f ′(x0)

g′(x0)
.

�us, the limit of the quotient of the functions as x → x0 is equal to the ratio of the slopes of their tangent
lines at x0.

�is is illustrated in Figures 1 through 3 below for the functions of Example 1. �e tangent line to

y = sin(2πx) at x = 1 in Figure 1 has slope 2π, the tangent line to y = x2 − 1 at x = 1 in Figure 2 has slope 2,

and the limit as x → 1 of the quotient
sin(2πx)

x2 − 1
in Figure 3 as x → 0 is

2π

2
= π.
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2
= π as x → 1

FIGURE 1 FIGURE 2 FIGURE 3

In the next example L’Hopital’s Rule is applied twice.

Example 2 Find lim
x→1

x2 − 2x + 1

x − 1 − ln x
.

Answer: y =
x2 − 2x + 1

x − 1 − ln x
is an indeterminate form of type

0

0
as x → 1 since y = x2 − 2x + 1 and y = x − 1 − ln x

tend to zero as x → 1. ●

lim
x→1

x2 − 2x + 1

x − 1 − ln x
= lim

x→1

d

dx
(x2 − 2x + 1)

d

dx
(x − 1 − ln x)

= lim
x→1

2x − 2

1 − x−1
provided the limit on the right exists. ●

2x − 2

1 − x−1
is also indeterminant of type

0

0
as x → 1 because 2x − 2→ 0 and 1 − x−1 → 0 as x → 1. ●

lim
x→1

x2 − 2x + 1

x − 1 − ln x
= lim

x→1

2x − 2

1 − x−1
= lim

x→1

d

dx
(2x − 2)

d

dx
(1 − x−1)

= lim
x→1

2

x−2
=

2

1−2
= 2

Example 2 is illustrated in Figures 4 through 6, which show the graphs of the functions y = x2 − 2x + 1
and y = x − 1 − ln x and their quotient. Notice that in this case we cannot express the limit of the quotient of
the functions as the quotient of the slopes of the tangent lines to their graphs because the tangent lines (the
x-axis) are horizontal and their slopes are zero.
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3
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y = x2 − 2x + 1 y = x − 1 − ln x y =
x2 − 2x + 1

x − 1 − ln x

FIGURE 4 FIGURE 5 FIGURE 6
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In the next example, L’Hopital’s Rule does not apply and cannot be used.

Example 3 What is lim
x→0

sin(3x)

1 + sin(4x)
?

Answer: �e numerator y = sin(3x) tends to 0 as x → 0, but the denominator y = 1+ sin(4x) tends to the nonzero
number 1. ● �e quotient is not indeterminate. ● lim

x→0

sin(3x)
1 + sin(4x) =

lim
x→0

sin(3x)
lim
x→0
[1 + sin(4x)] =

0

1
= 0

Mistakenly applying l’Hopital’s Rule to Example 3 would lead to the incorrect result,

lim
x→0

sin(3x)

1 + sin(4x)
= lim

x→0

d

dx
[sin(3x)]

d

dx
[1 + sin(4x)]

= lim
x→0

cos(3x) d
dx
(3x)

sin(4x) d
dx

4x)
= lim

x→0

3 cos(3x)
4 cos(4x) = 3

4
.

Example 4 Find lim
x→∞

ex/3

x
.

Answer: y =
ex/3

x
is an indeterminate of type

∞

∞
as x →∞ because ex/2 and x both tend to∞. ●

lim
x→∞

ex/2

x
= lim

x→∞

d

dx
(ex/2)
d

dx
(x)

= lim
x→∞

ex/2
d

dx
( 1
2
x)

1
= lim

x→∞

1
2
e
x/2
= ∞

�is example ilustrates the general principle that exponential functions y = eax for a > 0 tend to∞
faster than all polynomials as x →∞.

Example 5 Sketch the graph of y =
ex/2

x
by studying the function and its �rst derivative.

Answer: Study the function. ● y =
ex/2

x
is de�ned and continuous for x ≠ 0, is positive for x > 0 and is negative

for x < 0. ● It tends to∞ as x →∞ by Example 4. ● It tends to 0 as x → −∞ because ex and 1/x both tend to

zero. ● It tends to −∞ as x → 0− because ex/2 → 1 and 1/x → −∞. ● It tends to∞ as x → 0+ because ex/2 → 1

and 1/x →∞. ● Figure 7 ●

x

0← y

y < 0

∞← y

y > 0

y →∞

0

y → −∞

FIGURE 7

Study the derivative:

y′ =
d

dx
( ex/2

x
) = x

d

dx
(ex/2) − ex/2 d

dx
(x)

x2
=
xex/2

d

dx
( 1
2
x) − ex/2

x2
= ( 1

2
x − 1

x2
) e2/x = ( x − 2

2x2
) e2/x ●

�e derivative is not de�ned at x = 0, is zero at x = 2, is negative for x < 0 and for 0 < x < 2, and is positive for

x > 0. ● �e function is decreasing on (−∞, 0) and on (0, 2], is increasing on [2,∞), and has a local minimum

at x = 2. ● Figure 8

x

y ↳

y′ < 0

y ↳

y′ < 0

y ↱

y′ > 0
0 2

FIGURE 8
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Draw the graph. ● One approach: Use a calculator to �nd the values y(−1) = −e−1/2 ≐ −0.61, y(1) = e1/2 ≐ 1.65,
y(2) = 1

2
e ≐ 1.36, and y(6) = 1

6
e3 ≐ 3.35 and plot these points. ● Figure 9

x2 4 6

y

4

8 y =
ex/2

x

FIGURE 9

Example 6 Show that
ln x
n
√
x
→ 0 as x →∞ for every positive integer n.

Answer: y =
ln x
n
√
x
is an indeterminate form of type∞/∞ as x →∞ because ln x →∞ and n

√
x →∞ as x →∞. ●

lim
x→∞

ln x

x1/n
= lim

x→∞

d

dx
(ln x)

d

dx
(x1/n)

= lim
x→∞

x−1

1

n
x(1/n)−1

= lim
x→∞

x−1

1

n
x(1/n)x−1

= lim
x→∞

n

x1/n
= 0

Indeterminate forms of types 0 ⋅ ∞
�e product y = f (x)g(x) of a function f that tends to 0 and a function g that tends to∞ is called an
indeterminate form of type 0 ⋅ ∞. �e limits of many such expressions can be found by rewriting them

as indeterminate forms of type 0/0 or∞/∞.

Example 7 Find lim
x→0+
[√x (ln x)].

Answer: y =
√
x (ln x) is indeterminate of type 0 ⋅ ∞ as x → 0+ because y =

√
x → 0 and y = ln x → −∞. ●

Rewrite
√
x (ln x) as ln x

x−1/2
, which is an indeterminate form of type∞/∞ as x → 0+. ●

lim
x→0+
[√x (ln x)] = lim

x→0+

ln x

x−1/2
= lim

x→0+

d

dx
(ln x)

d

dx
(x−1/2)

= lim
x→0+

x−1

−
1
2
x−3/2

= lim
x→0+
(−2x1/2) = 0

We could attempt to �nd the limit in Example 7 by writing the given expression in the form

√
x

(ln x)−1 ,
which is of type 0/0 as x → 0+. �en, however, it does not help to apply l’Hopital’s Rule because the quotient

of the derivatives is

d

dx
(x1/2)

d

dx
[(ln x)−1)]

=

1
2
x−1/2

−(ln x)−2x−1 =
−

√
x

2(ln x)−2 = − 1
2

√
x(ln x)2, and we cannot tell what its

limit is as x → 0+. Nor would it help to apply l’Hopital’s Rule to the new quotient.
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Indeterminate forms of types 00 , 1∞ and∞0

�e expression y = f (x)g(x) is indeterminate of type 00 if f (x)→ 0 and g(x)→ 0; it is of type 1∞ if

f (x)→ 1 and g(x)→ ±∞; and it is of type∞0 if f (x)→∞ and g(x)→ 0. �e limits of such expressions
can o�en by found by applying l’Hopital’s Rule to their logarithms.

Example 8 Find the limit of y = x−x as x → 0+.

Answer: y = x−x is of type 00 as x → 0+. ● ln(x−x) = −x ln x is an indeterminate of type 0 ⋅ ∞. ●

lim
x→0+

ln(x−x) = lim
x→0+

(−x ln x) = lim
x→0+

ln x

x−1
= lim

x→0+

d

dx
(− ln x)

d

dx
(x−1)

= lim
x→0+

−x−1

−x−2
= lim

x→0+
x = 0 ● Because its

logarithm tends to 0, the function y = x−x = e ln(x
−x) tends to e0 = 1 as x → 0+/ ● lim

x→0+
x
−x = 1 ● �e curve

y = x−x is shown in Figure 10.

x1

y

1

y = x−x

FIGURE 10

Piecewise constant rates of change

Example 9 At 10:00 AM one morning a truck driver is 50 miles east of a town He drives 75 miles per hour
toward the east for two hours to make a delivery. Next, he drives west at 50 miles per hour for
two hours to make another delivery and then drives east at 50 miles per hour for two more
hours. According to this mathematical model, his velocity toward the east is the “step”
function of Figure 11 with t = 0 at 10 AM. (a) How far is he from the �rst town at t = 6? (b)
How is the answer to part (a) related to the areas of the rectangles in Figure 12?

t1 2 3 4 5 6

v (miles per hour)

−50

25

75

(hours)

v = v(t)

t1 5 6

v (miles per hour)

−50

25

75

(hours)

A

B

C

FIGURE 11 FIGURE 12

Answer: (a) At t = 6, he is [50 miles] + [75 miles per hour][2 hours] − [50 miles per hour][2 hours]

+ [50 miles per hour][2 hours] = 50 + 150 − 100 + 100 = 200 miles east of the town.

(b) His location at t = 6 equals his location at t = 0 plus the the sum of the areas of rectangles A and C in Figure 12,

minus the area of rectangle B.
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Partitions and step functions
A partition of a �nite closed interval [a, b] is a �nite number of points x0, x1, x2, x3, . . . , xN such that

a = x0 < x1 < x2 < x3⋯ < xN = b.

�ese points divide [a, b] into N subintervals. Figure 13 shows, for example, the four subintervals[x0, x1], [x1, x2], [x2 , x3], and [x3, x4] that are de�ned by a partition, a = x0 < x1 < x2 < x3 < x4 = b.

xa = x0 x1 x2 x3 x4 = b

FIGURE 13

A function is a step function on an interval [a, b] if it is constant on the interiors (x0, x1), (x1, x2),(x2, x3), . . . , (xN−1 , xN) of the subintervals in a partition of the interval. �e function might or might not be
de�ned at endpoints of the subintervals.

�eorem 2 Suppose that a function y = F(x) is continuous on a �nite closed interval [a, b] and that its
derivative r = F′(x) is a step function on [a, b]. �en the region between the graph r = F′(x)
and the x-axis for a ≤ x ≤ b consists of a �nite number of rectangles, and the change in the
function’s value from x = a to x = b is given by

F(b) − F(a) =
⎡⎢⎢⎢⎢⎣

�e area of
all rectangles

above the x-axis

⎤⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎣
�e area of
all rectangles
below the x-axis

⎤⎥⎥⎥⎥⎦
.

Example 10 A water tank contains 300 gallons of water at time t = 0 (minutes) and the rate of �ow r = r(t)
(gallons per minute) into the tank for 0 ≤ t ≤ 70 is the step function in Figure 14. How much
water is in the tank at t = 70?

t10 20 30 40 50 60 70

r (gallons per minute)

5

10

−5

−10

(minutes)

r = r(t)

t20 30 50 70

r (gallons per minute)

5

10

−5

−10

(minutes)

FIGURE 14 FIGURE 15

Answer: We assume that the volume V(t) of water in the tank at time t is continuous on [0, 70]. ●
V(70) − V(0) = [10 gallons

minute
] [10 minutes] + [5 gallons

minute
] [10 minutes] − [5 gallons

minute
] [30 minutes]

− [10 gallons

minute
] [20 minutes] = 100 + 50 − 150 − 200 gallons = −200 gallons. ●

V(70) = V(0) − 200 = 300 − 200 = 100 ● �ere are 100 gallons of water in the tank at t = 70

�e volume of water in the tank at t = 70 in Example 10 is equal to the volume at t = 0 plus the area of
the two rectangles above the t-axis in Figure 15, minus the area of the two rectangles below the t-axis.
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Example 11 What is F(1) if y = F(x) is continuous on [0, 1], F(0) = 10, and F′(x) equals 10 for 0 < x < 1
3
,

equals 20 for 1
3
< x < 2

3
, and equals 30 for 1

3
< x < 1?

Answer: F(1) = F(0) + 10( 1
3
) + 20( 1

3
) + 30( 1

3
) = 10 + 60

3
= 30

Example 12 A few plants, including jack in the pulpit, skunk cabbage, and sacred lotus, can create heat
from oxygen and other nutrients. �e step function in Figure 16 is a model of the rate of
consumption of oxygen by a sacred lotus plant from noon one day to midnight 36 hours later.
�e �ower kept its temperature between 30○C and 37○C as the air temperature varied between
10○C and 35○C by consuming more oxygen in the colder periods. (Data adapted from Scienti�c
American) How much oxygen did the �ower consume during the 36 hours? (t is measured in
minutes.)

t

r (milliliters per minute)

1

2

3 r = r(t)

12
P
M

6
P
M

12
A
M

6
A
M

12
P
M

6
P
M

12
A
M

1.0

1.9

2.5 2.4

1.7
2.0

FIGURE 16

Answer: [Total oxygen consumed]=1(360) + 1.9(360) + 2.5(360) + 2.4(360) + 1.7(360) + 2.0(360) = 4140
milliliters

Example 13 Figures 17 and 18 show the graphs of a piecewise linear function y = f (x) and its derivative
r = f ′(x). According to the conclusion of �eorem 2, f (3) − f (0) is equal to the combined

area 2(1)+ 1(2) = 4 of rectanglesA and B in Figure 18. Instead, f (3)− f (0) = 2−0 = 2. Explain.

x21 3

y

2

1

y = f (x)

x21 3

r

2

1

r = f ′(x)

A

B

FIGURE 17 FIGURE 18

Answer: �eorem 2 does not apply because f is not continuous on [0.3].
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Approximating continuous rates of change with step functions
Suppose that the continuous function v = v(t) of Figure 19 is the velocity of a car that is at s = s(t) on an

s-axis at time t, so that v(t) = s′(t) for a < t < b and that s = s(t) is continuous on [a, b]. Notice that the
region between the graph and the t axis for a ≤ t ≤ b in Figure 19 is in two parts. �e region labeled A for
the time period a ≤ t < c, when the car’s velocity is positive, is above the t-axis. �e region labeled B for
c < t ≤ b, when the car’s velocity is negative, is below the t-axis.

t

v

v = v(t)

a

b

c

A

B
t

v

v = v(t)

a

b

FIGURE 19 FIGURE 20

We cannot apply �eorem 2 in this case because the velocity is not a step function. Instead we

approximate v = v(t) with a step function by approximating regions A and B by rectangles, as in Figure 20,

where the sides of the rectangles are determined by a partition of [a, b] and the tops are chosen to intersect
the graph of v. If the car’s velocity were given by the step function, we could apply �eorem 2 and conclude

that the change in the car’s position s(b) − s(a) from t = a to t = b equals the area of the two rectangles
above the t-axis, minus the area of the three rectangles below the t-axis. Instead, the step function
approximates the actual velocity v, and the di�erence of the areas of the rectangles approximates the change
in the car’s position:

(1) s(b) − s(a)≈
⎡⎢⎢⎢⎢⎣

�e area of
all rectangles
above the t-axis

⎤⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎣
�e area of
all rectangles
below the t-axis.

⎤⎥⎥⎥⎥⎦
.

Formula (1) would give a better approximation if we used more, narrower rectangles, as in Figure 21.
To obtain exact results, we let the number of rectangles tend to in�nity and their widths tend to zero. We
can expect that the areas of the two sets of rectangles determined by the graph of the continuous function

v = v(t) would approach the areas of regions A and B in Figure 19, and that the change in position with
velocity given by the step function would approach the change in position of the truck with velocity given

by v(t). Consequently, we can expect that

(2)

s(b) − s(a) = lim
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎢⎣

�e area of

all rectangles

above the t-axis

⎤⎥⎥⎥⎥⎥⎥⎦
−

⎡⎢⎢⎢⎢⎢⎢⎣

�e area of

the rectangles

below the t-axis

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
= [�e area of region

A in Figure 20
] − [�e area of region

B in Figure 20
]

where the limit is taken as the number of rectangles in the approximation tends to∞ and their widths tend
to 0.
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t

v

v = v(t)

a

b

FIGURE 21

In the next lecture we will de�ne the integral ∫
b

a
v(t) dt so that it equals the di�erence of areas on

the right of (2), and we will see that with this de�nition, equation (2) is an example of Part 1 of the
Fundamental Theorem of Calculus.

Interactive Examples

Work the following Interactive Examples on the class web page, http//www.math.ucsd.edu/∽ ashenk/
(�e chapter and section numbers on this site do not match those in the textbook for the class.)

Section 5.1: 1–9

Section 6.1: 1, 2


