
Math 20A. Lecture 4.

Leibniz notation and the di�erentiation operator
Isaac Newton (1642–1727) and Gottfried Leibniz (1646–1716), who are considered to be the founders of
calculus, each introduced notation for the derivative. Prime notation f ′(a) is similar to that used by
Newton, and the symbols used by Leibniz evolved into what is known today as Leibniz notation.

In Leibniz notation, the derivative f ′ of f is denoted
d f

dx
and its value f ′(a) at x = a is denoted

[d f
dx
]
x=a

, so that the de�nition of the derivative reads

(1) [d f
dx
]
x=a
= lim

x→a

f (x) − f (a)
x − a .

�e symbol
d

dx
is called the differentiation operator. It converts a function f into its derivative:

d

dx
( f ) = d f

dx
.

�e derivative of y = xn with constant n
Leibniz notation is used in the statement of the next theorem.

�eorem 1 For any constant n and for x in the open interval or intervals where y = xn−1 is de�ned,
(2)

d

dx
(xn) = nxn−1

In the case of n = 0, equation (2) is interpreted as the statement,

d

dx
(1) = 0

which is valid for all x.

�e derivative (2) exists for all x with two exceptions. It does not exist for x ≤ 0 if n is irrational or if n

is a fraction p/q with p an odd integer and q an even integer, since then the domain of y = xn does not
include any negative numbers; and it does not exist at x = 0 if n is < 1 since then y = xn−1 is not de�ned at
x = 0.
�e cases of n = 0 and n = 1
For n = 0, the function y = xn is y = 1 since x0 = 1, and for n = 1 the function y = xn is y = x since x1 = x.
Because these functions are linear. their derivatives are the slopes of the lines that are their graphs
(Figures 1 and 2). Consequently,

d

dx
(x0) = d

dx
(1) = 0 and

d

dx
(x1) = d

dx
(x) = 1.

�ese formulas give (2) for n = 0 and n = 1.
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�e case of integers n ≥ 2
To �nd the derivative of y = xn at any point x = a for an integer n ≥ 2, we use the de�nition,
(3) [ d

dx
(xn)]

x=a
= lim

x→a

xn − an
x − a .

We found this limit for n = 2 and speci�c values of a in examples and exercises of the last lecture by using
the factorization,

x2 − a2 = (x − a)(x + a).
Since x + a → a + a = 2a as x → a, we conclude from the last equation that

x2 − a2 = (x − a)[An expression that tends to 2a as x → a].

�ere is a similar factorization for every integer n ≥ 3.�e �rst few read

x3 − a3 = (x − a)(x2 + ax + a2)
= (x − a)[An expression that tends to 3a2 as x → a]

x4 − a4 = (x − a)(x3 + ax2 + a2x + a3)
(x − a)[An expression that tends to 4a3 as x → a]

x5 − a5 = (x − a)(x4 + ax3 + a2x2 + ax4 + x4)
= (x − a)[An expression that tends to 5a4 as x → a]

�is pattern continues, so that for any integer n ≥ 2,
xn − an = (x − a)[An expression that tends to nan−1 as x → a].

Substituting this formula into de�nition (3) gives

[ d
dx
(xn)]

x=a
= lim

x→a

xn − an
x − a

= lim
x→a

(x − a)[An expression that tends to nan−1 as x → a]

x − a .

We cancel the factor (x − a) to obtain
[ d
dx
(xn)]

x=a
= lim

x→a
[An expression that tends to nan−1 as x → a] = nan−1.

�is gives�eorem 1 in this case at x = a.
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Example 1 What is the derivative of y = x6?
Answer: If n = 6, then n − 1 = 5 ● Apply �eorem 1 with n = 6. ● d

dx
(x6) = 6x5

�e case of positive fractions n = p/q
To show more clearly the ideas behind the proof of�eorem 1 for fractions n = p/q, where p and q are

positive integers, we will only deal with the case of n = 4
3
.

By de�nition (1),

[ d
dx
(x4/3)]

x=a
= lim

x→a

x4/3 − a4/3
x − a .

For x ≠ a we set z = x1/3 and b = a1/3.�en x = z3, a = b3 and
x4/3 − a4/3

x − a = z4 − b4
z3 − b3 .

Dividing the numerator and denominator of the last ratio by z − b yields

(4)
x4/3 − a4/3

x − a =
z4 − b4
z − b
z3 − b3
z − b

.

�e derivative of x4/3 is the limit of this expression as x tend to a. When we take this limit, z = x1/3
tends to b = a1/3 so that the numerator of (4) tends to the derivative 4b3of y = z4 at z = b and the
denominator tends to the derivative 3b2 of y = z3 at x = b.

[ d
dx
(x4/3)]

x=a
= [

d

dz
(z4)]

z=b

[ d
dz
(z3)]

z=b

= 4b3

3b2
= 4

3
b.

Since b = a1/3, we obtain,
[ d
dx
(x4/3)]

x=a
= 4

3
a1/3.

�is is�eorem 1 at x = a for n = 4
3
for which n − 1 = 1

3
. Similar calculations would give the result for any

positive fraction n = p/q.
Example 2 Give an equation for the tangent line to y = √x at x = 9 and draw it with the curve.

Answer: y(9) = √9 = 3 ● y′(9) = [ d
dx
(x1/2)]

x=9
= [ 1

2
x−1/2]

x=9
= [ 1

2
√
x
]
x=9
= 1

6
●

Tangent line: y = y(9) + y′(9)(x − 9) or y = 3 + 1
6
(x − 9) ● Figure 3
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�e case of negative rational numbers n

We give the details only in the particular case of n = − 1
3
to avoid confusing details.

By the de�nition,

[ d
dx
(x−1/3)]

x=a
= lim

x→a

x−1/3 − a−1/3
x − a

= lim
x→a

1

x − a (
1

x1/3
− 1

a1/3
)

= lim
x→a

1

x − a (
a1/3 − x1/3
a1/3x1/3

)
= (lim

x→a

−1
a1/3x1/3

)(lim
x→a

x1/3 − a1/3
x − a )

= −1
a1/3a1/3

[ d
dx
(x1/3)]

x=a
.

By�eorem 1 for positive fractions n,
d

dx
(x1/3) = 1

3
x−2/3 and the last equations give

[ d
dx
(x−1/3)]

x=a
= −1
a2/3
( 1
3
a−2/3) = − 1

3
a−4/3.

�is gives�eorem 1 at x = a in the case of n = − 1
3
for which n − 1 = − 4

3
.

We will establish�eorem 1 for irrational exponents n in a later lecture by using logarithms.

Derivatives of linear combinations of functions
A linear combination of functions y = f (x) and y = g(x) is a function of the form

y = Af (x) + Bg(x) with constants A and B. Our next di�erention rule enables us to �nd the derivative of
any such function if we know the derivatives of f and g.

�eorem 2 If y = f (x) and y = g(x) have derivatives at x, then for any constants A and B

(5)
d

dx
[Af (x) + Bg(x)] = Af ′(x) + Bg′(x).
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�eorem 2 is also established by using the de�nition of the derivative. Suppose that f and g have
derivatives at x = a.�en

[ d
dx
[Af (x) + Bg(x)]]

x=a
= lim

x→a

[Af (x) + Bg(x)] − [Af (a) + Bg(a)]
x − a

= A[lim
x→a

f (x) − f (a)
x − a ] + B [lim

x→a

g(x) − g(a)
x − a ]

= Af ′(a) + Bg′(a).
Example 3 What is the derivative of h(x) = 3 f (x) + 5g(x) at x = 10 if f ′(10) = 4 and g′(10) = −2?

Answer: h′(10) = 3 f ′(10) + 5g′(10) = 3(4) + 5(−2) = 2
Example 4 Find a formula for the derivative of y = 5x3 − x−2 + 4.

Answer:
d

dx
(5x3 − x−2 + 4) = 15x2 + 2x−3

Derivatives of functions involving roots of x and reciprocals of powers and roots are found by
converting to exponential notation:

Example 5 What is f ′(x) for f (x) = 7 3
√
x + 8√

x
?

Answer: f ′(x) = 7 d

dx
(x1/3) + 8 d

dx
(x−1/2) = 7( 1

3
x(1/3)−1) + 8( − 1

2
x−(1/2)−1) = 7

3
x−2/3 − 4x−3/2

Example 6 Aman driving on a straight road is s = 1
4
t3 + 50t + 40 miles from his home t hours a�er noon.

What is his car’s velocity at 4:00 PM?

Answer: [Velocity at time t] = s′(t) = d

dt
( 1
4
t3 + 50t + 40) = 3

4
t2 + 50 ● [Velocity at 4:00 PM]

= s′(4) = [ 3
4
t2 + 50]

t=4
= 3

4
(42) + 50 = 62 miles per hour

Example 7 A precision heater is controlled by varying the current supplied to it. It produces Q(I) = 100I2
Calories of heat in one second when the current is I amperes. (a) What is the (instantaneous)
rate of change of Q with respect to I at I = 3? (b) Give an equation for the tangent line to the

graph Q = Q(I) at I = 3 (c) Draw the graph and the tangent line in an IQ-plane.

Answer: (a) Q′(I) = d

dI
(100I2) = 200I ● Q′(3) = 200(3) = 600 Calories per ampere

(b) Q(3) = 100(32) = 900 ● Tangent line: Q = Q(3) +Q′(3)(I − 3) ● Q = 900 + 600(I − 3)
(c) �e points (0, 0) and (3, 100) are on the curve, which curves up to the right from the origin. ● �e points

(3, 100) and (5, 2100) are on the tangent line. ● Figure 4

I1 2 3 4 5

Q (Calories)

900

2100

3000 Q = Q(I)

(amperes)

FIGURE 4
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Di�erentiable functions are continuous
We will need the following fundamental result to derive the next di�erentiation rules.

�eorem 3 If y = f (x) has a derivative at x = a, then it is continuous at x = a.
�is theorem follows easily from the de�nitions. Suppose that the derivative,

f ′(a) = lim
x→a

f (x) − f (x)
x − a

exists. We write for x ≠ a,
f (x) − f (a) = [ f (x) − f (x)

x − a ] (x − a)
�is quantity tends to zero as x → a because the di�erence quotient in square brackets tends to the number

f ′(a) and x − a tends to zero. Consequently, f (x)→ f (a) as x → a and f is continuous at x = a.
�e Product Rule
Imagine that the sides of the rectangle in Figure 5 are changing, so that the width w = w(t), height h = h(t),
and area A(t) = w(t)h(t) of the rectangle are functions of the time t. We consider a �xed time t and

assume thatw′(t) and h′(t) exist. To simplify the geometric interpretation of this discussion, we also
assume that these derivatives are positive.

w(t)

h(t)

w(t)

h(t)

∆w

∆h (I)

(II)

(III)

FIGURE 5 FIGURE 6

Consider a positive change ∆t in the time from t to t + ∆t. We let ∆w and ∆h be the corresponding
changes in the width and height, as in Figure 6.�en at time t +∆t, the width of the rectangle is w +∆w and
its height is h + ∆h.�e change ∆A in the area from t to t + ∆t is the area of the three rectangles labeled(I), (II), and (III) in Figure 6:

∆A = [Area (I)] + [Area (II)] + [Area (III)]
Rectangle (I) is w(t) units wide and ∆h units high, rectangle (II) is ∆w units wide and h(t) units high,
and rectangle (III) is ∆w units wide and ∆h high.�erefore,

(6) ∆A = w(t)∆h + h(t)∆w + ∆w∆h.
�is equation also holds for negative ∆t. We divide both sides of it by ∆t to have

(7)
∆A

∆t
= w(t) [∆h

∆t
] + h(t) [∆w

∆t
] + ∆w [∆h

∆t
] .
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�e value of t is �xed, so w(t) and h(t) are constants. Also, since h′(t) exists, h is continuous at t and

lim
∆t→0

∆h = 0.
Since

∆w

∆t
→ w′(t) and ∆h

∆t
→ h′(t) as ∆t → 0, equation (7) gives

(8)
A′(t) = lim

∆t→0

∆A

∆t
= w(t)h′(t) + h(t)w′(t) + 0[h′(t)]

= w(t)h′(t) + h(t)w′(t).
Formula (8) is an example of the Product Rule. For its general statement, we replace t by x,w by f , h

by g, and the area A by f g:

�eorem 4 (�e Product Rule) If y = f (x) and y = g(x) have derivatives at x, then so does their product,

y = f (x)g(x), and
(9)

d

dx
( f g) = f

dg

dx
+ g d f

dx
.

In prime notation (9) reads

( f g)′ = f g′ + g f ′.
Remember the Product Rule as the following statement:�e derivative of a product of two functions

equals the �rst function multiplied by the derivative of the second, plus the second function multiplied by
the derivative of the �rst.

Example 8 Find the derivative of y = (x5 + x2)(x1/3 + 1) at x = 1.
Answer: y′(x) = d

dx
[(x5 + x2)(x1/3 + 1)] = (x5 + x2) d

dx
(x1/3 + 1) + (x1/3 + 1) d

dx
(x5 + x2) =

(x5 + x2)( 1
3
x−2/3) + (x1/3 + 1)(5x4 + 2x) ● y′(1) = (1 + 1)( 1

3
) + (1 + 1)(5 + 2) = 14 2

3

Example 9 Find the rate of change of the area of a rectangle at a moment when the width is 4 meters, the
height is 2 meters, the width is increasing 3 meters per hour, and the height is increasing 5
meters per hour.

Answer:
dA

dt
= wdh

dt
+ hdw

dt
= [4 meters][5 meters

hour
] + [2 meters][3 meters

hour
] = 4(5) + 2(3) = 26 square meters

hour

Related-rate problems
In Example 9 we started with an equation, A = wh relating three functions of time, w , h, and A. We

di�erentiated the equation with respect to t to obtain an equation, A′ = wh′ + hw′, which we used to �nd
the rate of change of A from w , h, and their rates of change.�is type of problem, which involves rates of
change of related functons, is called a related-rate problem. Here is another example.

Example 10 At the beginning of 1990 the total population of the U.S was 248.7 million, of whom 51.3% were
women, the total population was increasing at the rate of 3.5 million per year, and the
percentage of women was decreasing 0.04% per year (data adapted from the Statistical Abstract
of the United States). At what rate was the population of women increasing at the beginning of
1990?

Answer: Let p = p(t) be the total U.S. population (measured in millions) in year t and let F = F(t) be the fraction
that were women (the percent divided by 100). ● p(1990) = 248.7, F(1990) = 0.513, p′(1990) = 3.5, and
F ′(1990) = −0.0004 ● [Population of women at time t] =W(t) = F(t)p(t) ● W ′(t) = F(t)p′(t) + F ′(t)p(t)● W ′(1990) = F(1990)p′(1990) + F ′(1990)p(1990) = (0.513)(3.5) + (248.7)(−0.0004) ≐ 1.7 million per year
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�eQuotient Rule
Derivatives of quotients of functions are found by using the following result.

�eorem 5 (�e Quotient Rule) At any value of x where y = f (x) and y = g(x) have derivatives and g(x) is
not zero, y = f (x)/g(x) also has a derivative and

(10)
d

dx
( f
g
) = g

d f

dx
− f

dg

dx
g2

.

Formula (10) in prime notation is

( f
g
)′ = g f ′ − f g′

g2
.

Remember the Quotient Rule as the following statement:�e derivative of a quotient equals the
denominator multiplied by the derivative of the numerator, minus the numerator multiplied by the
derivative of the denominator, all divided by the square of the denominator.

To prove the theorem, we suppose that y = f (x) and y = g(x) have derivatives at a �xed x and that

g(x) ≠ 0. We let ∆x denote a small, nonzero change in the variable, let ∆ f = f (x + ∆x) − f (x) and
∆g = g(x + ∆x) − g(x) be the resulting changes in f and g, and write f for f (x) and g for g(x).�en

f (x + ∆x) = f + ∆g and g(x + ∆x) = g + ∆g, and

d

dx
( f
g
) = lim

∆x→0

f + ∆ f

g + ∆g −
f

g

∆x

= lim
∆x→0

1

∆x
[ g( f + ∆ f ) − f (g + ∆g)

g(g + ∆g) ]
= lim

∆x→0

1

g(g + ∆g) [
f g + g∆ f − f g − f ∆g

∆x
]

= lim
∆x→0

1

g(g + ∆g) [g
∆ f

∆x
− f

∆g

∆x
] .

Because g′(x) exists, the function g is continuous at x and ∆g → 0 as ∆x → 0. Also
∆ f

∆x
→ d f

dx
and

∆g

∆x
→ dg

dx
as ∆x → 0.�erefore the last equation gives

d

dx
( f
g
) = 1

g2
[g d f

dx
− f

dg

dx
] .

�is gives (10) to prove the theorem.

Example 11 What is S′(0) if R(x) = P(x)/Q(x), P(0) = 3, P′(0) = 10,Q(0) = 5, and Q′(0) = 50?
Answer: R′(0) = Q(0)P′(0) − P(0)Q′(0)

[Q(0)]2 = 5(10) − 3(50)
52

= 50 − 150
25

= −4.

Example 12 What is
dy

dx
if y = x2

x4 + a with constant a?

Answer:
dy

dx
=
(x4 + a) d

dx
(x2) − x2 d

dx
(x4 + a)

(x4 + a)2 = (x
4 + a)(2x) − x2(4x3)
(x4 + a)2 = 2ax − 2x5

(x4 + a)2
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Example 13 Figures 7 and 8 show graphs of the U.S. national debt D = D(t) and the U. S. population
P = P(t) as functions of the time (data adapted from the Statistical Abstract of the United
States). Find (a) the approximate debt per person and (b) the approximate rate of increase
with respect to time of the debt per person at the beginning of 1985.
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FIGURE 7 FIGURE 8

Answer: Possible answers: (a) D(1985) ≈ 1850 billion dollars ● P(1985) ≈ 240 million people. ●
[Debt per person at the begining of 1985]= D

P
≈

1850 billion dollars

240 million people
≐ 7.7 thousand dollars per person ●

(b) �e points (1980, 600) and (1985, 1850) are on the approximate tangent line in Figure 9. ●
D′(1985) ≈ 1850 − 600

1985 − 1980 ≐ 250 billion dollars per year ● �e points (1970, 180) and (1985, 240) are on the

approximate tangent line in Figure 10. ● P′(1985) ≈ 240 − 180
1985 − 1970 = 4 million people per year ●

[Rate of change of the debt per person ] = d

dt
[D
P
] = PD′ − DP′

P2
≈

(240)(250) − (1850)(4)
2402

≐ 0.913 thousand dollars per person per year
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FIGURE 9 FIGURE 10

Example 14 What is
dy

dx
for y =

√
x

x5 + 1?
Answer: = (x

5 + 1)( 1
2
x−1/2) − x1/2(5x4)
(x5 + 1)2

Example 15 What isW ′(4) ifW(x) = Y(x)
Z(x) ,Y(4) = 2, Z(4) = 5, Y ′(4) = 3, and Z′(4) = 6

Answer: 3
25
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Example 16 Figures 11 and 12 give the graphs of di�erentiable functions y = A(x) and y = B(x). Give
approximate values of AB,A/B, and of their �rst derivatives at x = 2.

x1 2 3

y

1

2

3

y = A(x)

x1 2 3

y

1

2

3

y = B(x)

FIGURE 11 FIGURE 12

Answer: Figure 13 ● A(2) ≈ 2.5 ● A′(2) ≈ −0.6 ● Figure 14 ● B(2) ≈ 1.5 ● B′(2) ≈ 1 ●
[AB]x=2 ≈ 3.75 ● [A

B
]
x=2

≈ 1.7 ● [ d
dx
(AB)]

x=2

≈ 1.6 ● [ d
dx
(A
B
)]

x=2

≈ −1.5
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y
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3

y = A(x)

x1 2 3

y

1
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3

y = B(x)

FIGURE 13 FIGURE 14

Interactive Examples

Work the following Interactive Examples on the class web page, http//www.math.ucsd.edu/∽ ashenk/
(�e chapter and section numbers on this site do not match the chapters and sections of the textbook.)

Section 2.4: 1–4

Section 2.6: 1–5


