
Math 20A. Lecture 5 (corrected).

�e Chain Rule for powers
We start with the rule for di�erentiating powers of functions.

�eorem 1 (�e Chain Rule for powers)

Suppose that the derivative
d f

dx
of a function f exists at a point x and that n is a constant such

that the value f (x) of the function is in an open y-interval where yn−1 is de�ned. �en the
derivative of y = f n at x is

(1) [ d
dx
( f n)]

x
= n[ f (x)]n−1 [d f

dx
]
x
.

Remember (1) as the following statement: �e derivative of the nth power of a function equals n,

multiplied by the (n − 1)st power of the function, multiplied by the derivative of the function.

To derive (1) we start with the de�nition,

[ d
dx
( f n)]

x
= lim

∆x→0

[ f (x + ∆x)]n − [ f (x)]n
∆x

.

For nonzero ∆x, we let ∆ f denote the change in f when x is changed from x to x + ∆x:
∆ f = f (x + ∆x) − f (x).

We write f for f (x), so that f (x + ∆x) = f + ∆ f . To avoid a complicated step in the general proof of (1), we
assume that ∆ f is not zero for all small nonzero ∆x. �en for such ∆x,

(2)
[ f (x + ∆x)]n − [ f (x)]n

∆x
= ( f + ∆ f )n − f n

∆x
= [( f + ∆ f )n − f n

∆ f
][∆ f

∆x
] .

We obtained the last expression by multiplying and dividing by ∆ f .

�e di�erence quotient
∆ f

∆x
on the right of (2) tends to the derivative [d f

dx
]
x
as ∆x → 0. Also, ∆ f tends

to 0 as ∆x → 0 since f is continuous at x, so the di�erence quotient
( f + ∆ f )n − f n

∆ f
tends to

d

d f
( f n),

which equals n f n−1 by the di�erentiation rule from the last lecture. �us equation (2) becomes equation (1)

when ∆x → 0.

Example 1 Find the x-derivative of y = (x3 + 1)5.
Answer:

d

dx
[(x3 + 1)5] = 5(x3 + 1)4 d

dx
(x3 + 1) = 5(x3 + 1)4(3x2) = 15x2(x3 + 1)4

Example 2 What is z′(0) if z(x) = [y(x)]4, y(0) = 2 and y′(0) = −10?
Answer: z′ =

d

dx
(y4) = 4y3 y′ ● z′(0) = 4[y(0)]3 y′(0) = 4(2)3(−10) = −320.

Example 3 (a) Express the rate of change dV/dt with respect to time of the volume V = 4
3πr

3 of a sphere

in terms of the radius r and the rate of change dr/dt of the radius. (b) Give a geometric
interpretation of the result of part (a). (c) At a particular moment, the radius of a sphere is 3
inches and is increasing at rate of 2 inches per minute. How fast is the volume of the sphere
increasing at that moment?
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Answer: (a)
dV

dt
=

d

dt
( 4
3
πr3) = 4

3
π(3r2)dr

dt
= 4πr2

dr

dt
(b) �e rate of change of the volume of the sphere equals

its surface area 4πr2 multiplied by the rate of change of the radius. (c) r = 3 ● dr

dt
= 5 ●

dV

dt
= 4π(32)(2) = 72π cubic inches per minute.

Example 4 Figure 1 shows the graph of the area A = A(t) of a square as a function of the time t. Find
(a) the approximate width w of the square at t = 6 and (b) the approximate rate of change of
the width with respect to time at t = 6.
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FIGURE 1 FIGURE 2

Answer: (a) A(6) ≈ 100 cubic inches ● A = w2 ● w =
√
A ● w(6) ≈√100 = 10 inches

(b) Figure 2 ● Points with approximate coordinates (6, 100) and (10, 220) are on the approximate tangent line.

● At t = 6:
dA

dt
≈

220 − 100
10 − 6 =

120 square inches

4 seconds
= 30 square inches per second ● dA

dt
=

d

dt
(w2) = 2wdw

dt
●

30 ≈ 2(10)dw
dt
● dw

dt
≈

30

20
=

3
2
inches per second

On the order of operations
Di�erentiating a complicated expression may require a combination of the Product Rule, the Quotient Rule,
the Chain Rule for powers, and other operations. You can determine the order in which to apply these
operations by noting the order of the steps used in calculating values of the function. �e di�erentiation is
carried out in the reverse order using the Product, Quotient, and Chain Rules to di�erentiate products,
quotients, and powers of functions.

Example 5 Find the x-derivative of the function y = ( x + 1
x − 3)

5

.

Answer: Because the last step in �nding a value of y = ( x + 1
x − 3)

5

is the taking of the ��h power, we �nd its

derivative by �rst using the Chain Rule for di�erentiating the ��h power of a function. ● Because the next to last

step involves calculating a quotient, the Quotient Rule is used next. ● Because the �rst steps are evaluating x + 1
and x − 3 these functions are di�erentiated last. ●
d

dx
[( x + 1

x − 3)
5] = 5( x + 1

x − 3)
4 d

dx
( x + 1
x − 3) = 5(

x + 1
x − 3)

4
⎡⎢⎢⎢⎢⎢⎢⎣
(x − 3) d

dx
(x + 1) − (x + 1) d

dx
(x − 3)

(x − 3)2
⎤⎥⎥⎥⎥⎥⎥⎦

= 5( x + 1
x − 3)

4 [(x − 3) − (x + 1)(x − 3)2 ] = 5( x + 1
x − 3)

4 [ −4
(x − 3)2 ] =

−20(x + 1)4
(x − 3)6
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Example 6 Find g′(x) for g(x) = x(x2 + 1)10. Do not simplify the answer.

Answer: �e Product Rule is used �rst in di�erentiating g because the last step in calculating its value involves

multiplicatiion. �e Chain Rule for di�erentiating 10th powers of functions is used next because the next to last

step in calculating its value involves taking a 10th power. ●
g′(x) = d

dx
[x(x2 + 1)10] = x d

dx
[(x2 + 1)10] + (x2 + 1)10 d

dx
(x)

= x[10(x2 + 1)9] d
dx
(x2 + 1) + (x2 + 1)10(1) = 10x(x2 + 1)9(2x) + (x2 + 1)10

Example 7 Express the derivative of y(x) = [x2 + u(x)]3/2 in terms of x , u(x), and u′(x).
Answer: y′(x) = d

dx
{[x2 + u(x)]3/2} = 3

2
[x2 + u(x)]1/2 d

dx
[x2 + u(x)] = 3

2
[x2 + u(x)]1/2[2x + u′(x)]

�e general Chain Rule
�e general Chain Rule deals with derivatives of general composite functions.

�eorem 2 (�e Chain Rule) If u = u(x) has an x-derivative x at x and y = G(u) has a u-derivative at u(x),
then y = G (u(x)) has an x-derivative at x, which is given by

(3) [ d
dx
[G (u(x))]]

x
= [dG

du
]
u(x)
[du
dx
]
x
.

If we denote the composite function y = G (u(x)) by (G ○ u)(x), we can express (3) with prime
notation as

(4) (G ○ u)′(x) = G′ (u(x)) u′(x)
where — since a prime is used to denote the derivative of a function with respect to its own variable — the
primes on the le� and right denote x-derivatives and the prime in the middle denotes a u-derivative.

To derive (3), we let ∆x denote a nonzero change in x from x to x + ∆x and denote the corresponding

changes in u(x) and G (u(x)) by ∆u and ∆G:

∆u = u(x + ∆x) − u(x)
∆G = G (u(x + ∆x)) −G (u(x)) .

To avoid a complicated step in the derivation of formula (3), we assume that ∆u is not zero for small
nonzero ∆x. �en for small nonzero ∆x,

G (u(x + ∆x)) −G (u(x))
∆x

= ∆G

∆x
.

We multiply and divide the last ratio by ∆u to obtain

(5)
∆G

∆x
= [∆G

∆u
] [∆u

∆x
] .

Because u is continuous at x, ∆u tends to zero when ∆x tends to zero, and the last equation gives

lim
∆x→0

∆G

∆x
= [ lim

∆u→0

∆G

∆u
] [ lim

∆x→0

∆u

∆x
] .

�is, by the de�nition of the derivative, equals

[ d
dx
[G (u(x))]]

x
= [dG

du
]
u(x)
[du
dx
]
x
.

�is gives formula (3).
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�e geometric interpretation of equation (5) is indicated in Figures 3 through 5. �e slope ∆G/∆x of
the secant line to the graph of the composite function y = G (u(x)) in Figure 5 is the product of the slopes

∆G/∆u and ∆u/∆x of the secant lines to the graphs of u = u(x) and y = G(u) in Figures 3 and 4.

u = u(x)

x

u

∆x

∆u

x

u(x)

y = G(u)

u

y

u(x)

∆u

∆G
G (u(x))

y = G (u(x))

x

y

x

G (u(x)) ∆G

∆x

[Slope] = ∆u

∆x
[Slope] = ∆G

∆u
[Slope] = ∆G

∆x

FIGURE 3 FIGURE 4 FIGURE 5

When ∆x tends to zero, the secant lines in Figures 3 through 5 approach the tangent lines in Figures 6

through 8. �ese drawings give a geometric interpretation of the Chain Rule itself: If we write
dG

dx
for the

slope of the tangent line to the graph of the composite function in Figure 8, then the Chain Rule reads

(6)
dG

dx
= dG

du

du

dx
.

�is formula is easy to remember because the terms “du” in the symbolic fractions on the right appear to
cancel. It states that the slope of the tangent line to the graph of the composite function in Figure 8 is equal
to the product of the slopes of the tangent lines to the graphs of the other functions in Figures 6 and 7.

Equation (6) also has another important interpretation: It states that the rate of change of the variable
G with respect to x equals its rate of change with respect to u, multiplied by the rate of change of u with
respect to x.

x

u
u = u(x)

x

u(x)

u

y
y = G(u)

u(x)

G(u(x))

x

y

x

y = G (u(x))

G (u(x))

[Slope] = du

dx
[Slope] = dG

du
[Slope] = dG

dx

FIGURE 6 FIGURE 7 FIGURE 8
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Example 8 What is the derivative of y = G (u(x)) at x = 5 if u(5) = 100, [dG
du
]
u=100

= 7, and
[du
dx
]
x=5
= −20?

Answer: [ d
dx
[G (u(x))]]

x=5

= [dG
du
]
u=u(5)

[du
dx
]
x=5

= [dG
du
]
u=100

[du
dx
]
x=5

= (7)(−20) = −140
Example 9 What is H′(2) if H(x) = (g ○ u)(x), u(2) = 5, u′(2) = −3, and g′(5) = 10?

Answer: H′(2) = (g ○ u)′(2) = g′ (u(2))u′(2) = g′(5)u′(2) = (10)(−3) = −30
Example 10 What is the x-derivative of S(x) = R(x4) at x = 2 if R is a function of u such that R′(16) = 2?

Answer: S′(x) = d

dx
[R(x4)] = R′(x4) d

dx
(x4) = 4x3R′(x4) ● S′(2) = 4(23)R′(24) = 32 R′(16) = 32(2) = 64

�e Chain Rule in narrative problems
�e Chain Rule is o�en easier to apply in narrative problems with the Leibniz notation of equation (6),

dG

dx
= dG

du

du

dx
.

Example 11 At 12:00 PM a balloon is 200 meters above the ground, it is rising 3 meters per second and its
volume is increasing at the rate of 0.001 liters per meter of height. At what rate is its volume
increasing with respect to time at 12:00 PM?

Answer: Let h be the balloon’s height (meters) and V its volume (liters). ● At 12:00 PM:
dh

dt
= 3 meters per

second,
dV

dh
= 0.001 liters per meter, and

dV

dt
=

dV

dh

dh

dt
= [0.001 liters

meter
] [3 meters

second
] = 0.003 liters per second

Using the Chain Rule with graphs
�e crew and passengers in airplanes are supplied pure oxygen to maintain enough oxygen in their blood
when they �y at high altitudes in unpressurized cabins. (A person whose blood oxygen concentration is 50%
of its maximum will lose consciousness in about �ve minutes and can go into a coma within half an hour.)

�e lower graph in Figure 9 gives the percent PA(h) of a person’s maximum oxygen concentration in his or
her blood when he or she is breathing the ambient air in an unpressurized cabin at an altitude of h thousand

feet above sea level. �e upper curve gives the percent PO(h) of the maximum oxygen concentration in his
blood if he is breathing pure oxygen at altitude h. (Data adapted from Textbook of Medical Physiology.)

h10 20 30 40 50

P (percent)

60

80

100

P = PA(h)
(thousand feet)

P = PO(h)

t4 8 12

h (thousand feet)

10

20

h = h(t)

(minutes)

FIGURE 9 FIGURE 10
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Example 12 Suppose that a passenger is breathing the ambient air in the unpressurized cabin of an airplane

whose altitude h = h(t) at time t (minutes) is given by the function of Figure 10.
(a) Approximately how high is the plane and what is the passenger’s approximate blood
oxygen concentration at t = 4? (b) What is the approximate rate of change with respect to
time of the passenger’s blood oxygen concentration at t = 4?
Answer: (a) Figure 10 shows that h(4) ≈ 10. ● Figure 9 then gives PA (h(4)) ≈ PA(10) ≈ 94. ● �e plane’s

altitude is approximately 10,000 feet and the passenger’s blood-oxygen level is approximately 94% at t = 4.

(b) �e two points on the tangent line in Figure 11 have approximate coordinates (10, 94) and (30, 70). ●
[dPA

dh
]
h=10

≈

70 − 94
30 − 10 = −1.2 percent per thousand feet ●

�e points on the tangent line in Figure 12 have approximate coordinates (4, 10) and (8, 16). ●
[dh
dt
]
t=4

≈

16 − 10
8 − 4 = 1.5 thousand feet per minute ● Chain Rule: [dPA

dt
]
t=4

= [dPA

dh
]
h=h(4)

[dh
dt
]
t=4

≈ [dPA

dh
]
h=10

[dh
dt
]
t=4

≈ [−1.2 percent

thousand feet
] [1.5 thousand feet

minute
] = −1.8 percent

minute
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FIGURE 11 FIGURE 12

Di�erentiation of implicitly de�ned functions
If we cannot solve an equation that de�nes a function y = y(x) to obtain an explicit formula for the

function, we can o�en �nd its derivative at any point x0 where we know its value y(x0). We take the
x-derivative of both sides of the equation that the function satis�es, evaluate the result at x0 and solve for

y′(x0). �is process for �nding derivatives of implicitly de�ned functions is called implicit
differentiation.

Example 13 What is the derivative at x = 4 of the function y = y(x) de�ned implicitly by the equation

x3 + y3 = 9xy and the condition y(4) = 2?
Answer: Use primes to denote x-derivatives. ● (x3)′ + (y3)′ = 9(xy)′ ● Product and Chain Rules:

3x2 + 3y2 y′ = 9y + 9xy′ ● x2 + y2 y′ = 3y + 3xy′ ● Set x = 4 and y = 2. ● 42 + 22 y′ = 3(2) + 3(4)y′ where y′
denotes y′(4) ● 8y′ = 10 ● y′(4) = y′ = 10

8
=

5
4
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�e graph of the equation x3 + y3 = 9xy in Example 13 is the folium of Descartes in Figure 13.
(�is curve was studied by the philosopher and mathematician René Descartes in 1638). �e graph of the

implicitly de�ned function is in Figure 14. �e slope of its tangent line at x = 4 is the derivative y′(4) = 5
4
.

x4

y

2

x4

y

2

y = y(x)

x3 + y3 = 9xy y = y(x)
FIGURE 13 FIGURE 14

Example 14 Find an equation of the tangent line at (2, 3) to the supercircle x4 + y4 = 97 in Figure 15.

x−2 2

y

−2

2

x4 + y4 = 97

FIGURE 15

Answer:
d

dx
(x4 + y4) = d

dx
(97) ● 4x3 + 4y3 y′ = 0 ● x3 + y3 y′ = 0 ● Set

x = 2, y = 3 ∶ 27y′ + 8 = 0, y(2) = 3, y′(2) = − 8
27
● Tangent line: y = 3 − 8

27
(x − 2)

Inverse functions
�e next theorem shows how to use the derivative of a function to �nd the derivative of its inverse.

�eorem 1 Suppose that the domain of Y = Y(x) includes an open interval where Y ′(x) is either positive or
negative and that X = X(y) is the inverse of Y = Y(x). �en for y in the interval,

(7) X′(y) = 1

Y ′ (X(y)) .
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Equation (7) in Leibniz notation with y = Y(x) and x = X(y) reads
(8)

dx

dy
= 1

dy/dx .
�is relationship between the symbolic fractions

dy

dx
and

dx

dy
is easy to remember because it looks like a rule

for ordinary fractions.

To show why (7) holds, suppose that the graph y = Y(x) is the curve in the xy-plane of Figure 16. �e

graph of its inverse x = X(y) in the yx-plane of Figure 17 is obtained by re�ecting the curve and the axes in
Figure 16 about the dashed line that bisects the positive x- and y-axes. Figure 16 shows the tangent line to

y = Y(x) at x and Figure 17 shows its mirror image, which is the tangent line to x = X(y) at y = Y(x). We
suppose that ∆x ≠ 0 is the run and ∆y is the corresponding rise on the tangent line in Figure 16 so that its

slope y′(x) equals ∆y/∆x. �en ∆y is the run and ∆x is the rise in Figure 17 so that

X′(y) = ∆x

∆y
= 1

∆y/∆x =
1

Y ′(x) .
�is is formula (7).

x

y

x

y
∆x

∆y

y

x

y

x

∆y

∆x

y = Y(x) x = X(y)
FIGURE 16 FIGURE 17

Example 15 What is X′(10) if x = X(y) is the inverse of y = Y(x), Y(2) = 10, and Y ′(2) = 1
3
?

Answer: X(10) = 2 because Y(2) = 10 ● X′(10) = 1

Y ′ (X(10)) =
1

Y ′(2) =
1
1
3

= 3.

Example 16 Suppose that a truck uses G = G(s) gallons of gasoline to go s miles on a trip and that when it

has gone 50 miles it has used 3 gallons of gasoline and is consuming gasoline at the rate of 1
15

gallon per mile. Let s = s(G) denote the inverse of G = G(s). Find the values of s and ds/dG at
G = 3 What do they denote?

Answer: s(3) = 50 (miles) is the distance the truck has traveled when it has used 3 gallons of gas. ●
ds

dG
=

1

dG/ds =
1

1
15
gallon per mile

= 15 miles per gallon is the rate of which gas is being used when the the truck

has used 3 gallons of gas.

Interactive Examples

Work the following Interactive Examples on the class web page, http//www.math.ucsd.edu/∽ ashenk/
(�e chapter and section numbers on this site do not match those in the textbook for the class.)

Section 3.1: 1, 2, 3

Section 5.3: 1, 2, 4–7


