
Math 20A. Lecture 6.

Compound interest

�eorem 1 Suppose that deposit of B0 dollars is made at at time t = 0 (years) in a bank account that pays P%

annual interest compounded n times a year. Let r = P

100
denote the fraction that corresponds to

P%. At time t = 1

n
,
2

n
,
3

n
, . . . the balance is

(1) B = B0(1 + r

n
)nt dollars.

Every one-nth of a year the fraction r/n of the current balance is paid in interest and the balance is

increased by the factor (1 + r

n
). A�er t years this has occurred nt times, raising the balance to the amount

in formula (1).

Example 1 According to legend, the Dutch colonist Peter Minuit paid $24 to buy Manhattan from the
Indians in 1626. How much would this investment have become as of year 2010 if it had been
kept in a savings account that paid 5% annual interest compounded semi-annually?

Answer: Let t = 0 correspond to 1626. ● �en t = 2010 − 1626 = 384 in year 2000. Use (1) with

B0 = 24, r = 0.05, n = 2, and t = 384. ● �e investment would have grown to

24(1 + 0.05

2
)2(384) = 24(1.025768) ≐ 4.13 × 109 or approximately 4 billion dollars.

�e number e
We number e, which is as important to the calculus of exponential functions and logarithms as the number
π is to trigonometry, is de�ned as the limit,

(2) e = lim
t→∞
(1 + 1

t
)t .

It is di�cult to prove that this limit exists because the base (1 + 1/t) in the expression (1 + 1/t)t decreases
toward 1 as the exponent t increases toward∞. �e proof is given in advanced calculus courses. �e
number e has the decimal expansion,

e = 2.71828182846 . . .
Formula (2) has the following generalization:

�eorem 2 For any real number x,

(3) ex = lim
t→∞
(1 + x

t
)t .

To derive (3) from (2) for a �xed positive x, we set s = t/x. �en t = sx , x/t = 1/s, and s →∞ as t →∞,
so that by (2)

lim
t→∞
(1 + x

t
)t = lim

s→∞
(1 + 1

s
)sx = [ lim

s→∞
(1 + 1

s
)s]x = ex .

Equation (3) can be derived similarly for x < 0 and is valid at x = 0, where both sides equal 1.
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Interest compounded continuously
�e limit as n →∞ of the balance (1) with interest is compounded n times a year is referred to as the
balance when interest is compounded continuously:

[Balance at time t with interest

compounded continuously
] = lim

n→∞
[B0(1 + r

n
)nt] .

We can �nd this limit by using �eorem 2.

�eorem 3 Suppose that a deposit of B0 dollars is made at time t = 0 (years) in an account that pays P%

annual interest compounded continuously. Set r = 1
100

P. �en the balance at time t > 0 is
(4) B(t) = B0e

rt dollars.

To derive this formula we write

lim
n→∞
[B0(1 + r

n
)nt] = B0{ lim

n→∞
[B0(1 + r

n
)n]}t = B0(er)t = B0e

rt .

Example 2 Suppose that deposit of $100 is made at t = 0 in an account that earns 50% annual interest.
(a) What is the balance at t = 0, 1, 2, 3, 4 and 5 if the interest is compounded annually?
(b) What is the balance at time t > 0 if the interest is compounded continuous;y?

Answer: (a) �e balance is increased by the factor 1.5 every year. ● B(0) = 100 ● B(1) = 100(1.5) = 150 ●
B(2) = 150(1.5) = 225 ● B(3) = 225(1.5) = 337.5 ● B(4) = 337.5(1.5) = 506.25 ●
B(5) = 506.25(1.5) = 759.375 (b) r = 1

100
(5) = 0.5 ● B(t) = 100e0.5t

�e smooth curve in Figures 1 and 2 is the graph of the balance B = 100e0.5t from Example 2 with
interest compounded continuously. �e �ve horizontal line segments in Figure 1 form the graph of the
balance with interest compounded annually (n = 1), and the �ve horizontal line segments in Figure 1 form
the graph of the balance with interest compounded semi-annually (n = 2). You can visualize that the graph
with interest compounded n times a year would approach the smooth curve as n →∞.

t1 2 3 4 5

B (dollars)

300

600

900

t1 2 3 4 5

B (dollars)

300

600

900

FIGURE 1 FIGURE 2

Derivatives of logarithms
We will use the de�nition of the number e to �nd a formula for derivatives of logarithms.

�eorem 4 Suppose that b is an arbitrary constant > 1. �en for all x > 0,
(5)

d

dx
(logb x) = logb e

x
.
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We �rst use the rule logb(A/B) = logb A− logb B with A = x + ∆x and B = x to rewrite the di�erence
quotient,

logb(x + ∆x) − logb x
∆x

= 1

∆x
[logb(x + ∆x) − logb x]

= 1

∆x
logb (x + ∆xx

) = 1

∆x
logb (1 + ∆x

x
) .

Next, we set ∆x = x/t with a positive constant t, so that

1

∆x
= t

x
and

∆x

x
= 1

t

and, with the rule t logb(A) = logb(At), we obtain
logb(x + ∆x) − logb x

∆x
= t

x
logb (1 + 1

t
) = 1

x
logb [(1 + 1

t
)t]

Because x is �xed and positive, we can have ∆x = x/t tend to 0 from the right by having t tend to∞.
�en, since y = logb x is continuous for x > 0,

lim
∆x→0+

logb(x + ∆x) − logb x
∆x

= lim
t→∞

1

x
logb [(1 + 1

t
)t]

= 1

x
logb [ limt→∞

(1 + 1

t
)t] = logb e

x
.

It can be shown that the same limit is obtained for the one-sided limit as ∆x → 0−, so that (5) is valid.

Formula (5) has the simplest form if b = e since loge e = 1. �e logarithm to the base e y = loge x is

called the natural logarithm and is denoted y = ln x. �eorem 4 gives the following result.

�eorem 5 For x > 0,
(6)

d

dx
(ln x) = 1

x
.

Example 3 Find an equation of the tangent line to y = ln x at x = 2.
Answer: Set y(x) = ln x. ● Tangent line: y = y(2) + y′(2)(x − 2) ● y(2) = ln(2) ● y′(x) = 1/x ●
y′(2) = 1

2
● Tangent line: y = ln(2) + 1

2
(x − 2)

Instead of using �eorem 1 to �nd derivatives of the logarithm to the base b, we use �eorem 5 and
the rule,

logb x = loge x

loge b
= ln x

ln b
.

Example 4 What is the rate of change of y = log10 x with respect to x at x = 3?
Answer: y′(x) = d

dx
[log10 x] = d

dx
( ln x

ln(10)) =
1

ln(10)x ● y′(3) = 1

3 ln(10)
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Derivatives of logarithms of functions
�e Chain Rule from the last lecture and formula (6) yield the following formula for positive di�erentiable

functions u = u(x):
(7)

d

dx
(lnu) = d

du
(lnu) du

dx
= 1

u

du

dx
.

Example 5 (a) What is the domain of y = ln(x2 + 1)? (b) What is its x-derivative?

Answer: (a) y = ln(x2 + 1) is de�ned for all x because u = x2 + 1 is positive for all x.
(b)

d

dx
[ln(x2 + 1)] = 1

x2 + 1
d

dx
(x2 + 1) = 2x

x2 + 1
Example 6 What is the derivative of y = x2 ln(3x + 1)?

Answer: Product and Chain Rules:
d

dx
[x2 ln(3x + 1)] = ln(3x + 1) d

dx
(x2) + x2 d

dx
[ln(3x + 1)]

= 2x ln(3x + 1)+ x2 1

3x + 1
d

dx
(3x + 1) = 2x ln(3x + 1) + 3x2

3x + 1
Example 7 �e pH of a solution with hydrogen-ion concentration C moles per liter is

y = − log10 C. A solution contains 5 × 10−9 moles of hydrogen ions per liter at a time when its

hydrogen-ion concentration is decreasing 5 × 10−10 moles per liter per hour. At what rate is the
pH of the solution increasing or decreasing at that moment?

Answer: Let C = C(t) be the hydrogen-ion concentration at time t. ● �e pH of the solution at time t is

y = − log10[C(t)] = − ln xln(10) . ● dy

dt
= d

dt
(− lnC

ln(10) ) = −
1

ln(10)
d

dt
(lnC) = −1

C ln(10)
dC

dt
●

At the moment in question, C = 5 × 10−9 and dC

dt
= −5 × 10−10 ● dy

dt
= −1(5 × 10−9) ln(10) (−5 × 10−10) = 1

10 ln(10)
● �e pH of the solution is increasing

1

10 ln(10) ≐ 0.043 pH-units per hour.

Derivative of y = ex

We use the formula for the derivative of the natural logarithm and the rule for �nding derivatives of inverse
functions from the last lecture to �nd the derivative of y = xx .
�eorem 6 y = ex has a derivative for all x, given by
(8)

d

dx
(ex) = ex .

Since the inverse of y = ex is x = ln y

d

dx
(ex) = 1

d

dy
(ln y) =

1

1/y = y = ex

and this is equation (8).
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Example 8 Give an equation of the tangent line to y = ex at x = 2 and draw it with the curve.

Answer: Tangent line: y = y(2) + y′(2)(x − 2) ● y(2) = e2 ● y′(x) = ex ● y′(2) = e2 ●
Tangent line: y = e2 + e2(x − 2) ● Figure 3

x1 2 3

y

10

20

y = ex

FIGURE 3

�e derivative of y = eu(x)

�eorem 6 and the Chain Rule imply that if u = u(x) has a derivative at x, then y = eu(x) has a derivative at
x, given by

(9)
d

dx
(eu) = d

du
(eu) du

dx
= eu du

dx
.

Remember this result verbally: �e x-derivative of e raised to the power u for a function u = u(x) equals e
raised to the power u, multiplied by the x-derivative of u.

Example 9 What is the x-derivative of y = ex3?
Answer:

d

dx
(ex3 ) = ex3 d

dx
(x3) = 3x2ex3

Example 10 Atmospheric pressure at the height h (miles) above the surface of the earth is p = 1.5e−0.2h
pounds per square inch. (Data Adapted from the Encyclopædia Britannica.) What is the rate of
change with respect to time of the atmospheric pressure on a weather balloon when it is one
mile in the air and is rising 0.1 miles per hour?

Answer: Let h = h(t) (miles) be the height of the balloon at time t (hours). ●
dp

dt
= d

dt
(1.5e−0.2h ) = 1.5e−0.2h d

dt
(−0.2h) = −1.5(0.2)e−0.2h dh

dt
= −0.3e−0.2h dh

dt
● At the moment in question,

h = 1 anddh
dt
= 0.1 ● dp

dt
= −0.3e−0.2(1)(0.1) = −0.03e−0.2 ≐ −0.025 pounds per square inch per hour

Example 11 What is the derivative of y = e−x

x
?

Answer:
dy

dx
= d

dx
( e−x

x
) = x

d

dx
(e−x ) − e−x d

dx
(x)

x2
=
xe−x

d

dx
(−x) − e−x
x2

= −xe
−x − e−x
x2
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�e derivatives of y = sin x and y = cos x
Consider an angle with its vertex at the center of a circle as in Figure 4. Its sides intersect the circle at points

P and Q, which are the endpoints of a chord of length PQ and an arc of length ÍPQ. In order to derive
formulas for the derivatives of sin x and cos x, we need to show that the ratio of these numbers tends to 1 as
the points come together:

(10) lim
P→Q

PQÍPQ = 1.
To see why this is true, consider the case where the chord PQ is one side of an polygon with n equal sides

that is inscribed in the circle, as shown in Figure 4 for n = 6. �e chord length PQ is one-nth of the

perimeter of the polygon and the arclength ÍPQ is one-nth of the circumference of the circle, so that

PQÍPQ = [Perimeter of the n-sided polygon]/n
[Circumference of the circle]/n

= Perimeter of the n-sided polygon

Circumference of the circle
.

Since the perimeter of the polygon tends to the circumference of the circle as n tends to∞, this quantity
tends to 1 and (10) holds.

P

Q

P

Q

FIGURE 4 FIGURE 5

�eorem 7 �e functions y = sin x and y = cos x have derivatives for all x given by

d

dx
(sin x) = cos x

d

dx
(cos x) = − sin x .
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To derive these formulas, we consider a �xed, acute angle x and small positive ∆x as in Figure 6. �e

point P = (cos x , sin x) is on the unit circle at the angle x and Q = (cos(x + ∆x), sin(x + ∆x)) is on the
circle at the angle x + ∆x. �en, with R the vertex at the right angle in the triangle in the drawing,

sin(x + ∆x) − sin x
∆x

= PQÍPQ RQ

PQ
= PQÍPQ cos α

cos(x + ∆x) − cos x
∆x

= − PQÍPQ RP

PQ
= − PQÍPQ sin α

where α is the angle at Q in the right triangle in Figure 6. �is angle equals the angle of inclination of the
perpendicular bisector OS of the chord PQ because the radius and chord are perpendicular. consequently,

α equals x + 1
2
∆x and tends to x as ∆x → 0+. Also PQ/ÍPQ → 1 by (10), and cos α → cos x and sin α → sin x

since these functions are continuous. �erefore,

lim
∆x→0+

sin(x + ∆x) − sin x
∆x

= lim
∆x→0

( PQÍPQ cos α) = cos x
lim

∆x→0+

cos(x + ∆x) − cos x
∆x

= lim
∆x→0

(− PQÍPQ sin α) = − sin x .

u

v

P = (cos x , sin x)

Q = (cos(x + ∆x), sin(x + ∆x))

R

∆x

α

x

FIGURE 6

Example 12 What is the derivative
d

dx
(5 sin x − 6 cos x)?

Answer:
d

dx
(5 sin x − 6 cos x) = 5 d

dx
(sin x) − 6 d

dx
(cos x) = 5 cos x + 6 sin x

�e Chain Rule combined with�eorem 7 yields the following formulas for the x-derivatives of
y = sinu and y = cos u, where u is a di�erentiable function of x:

d

dx
(sinu) = d

du
(sinu) du

dx
= cos u du

dx

d

dx
(cos u) = d

du
(cos u) du

dx
= − sinu du

dx
.
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Example 13 Find the derivative of y = sin(x1/2).
Answer:

dy

dx
= d

dx
[sin(x1/2)] = cos(x1/2) d

dx
(x1/2) = 1

2
x−1/2 cos(x1/2)

Example 14 What is y′(10) for y = cos (u(x)) if u(10) = 1
2
π and u′(10) = 3?

Answer: y′ = (cosu)′ = − sinu u′ ● At x = 10: y′(10) = − sin (u(10))u′(10) = − sin( 1
2
π)(3) = −3

Example 15 Suppose that the top of a ten-foot-long ladder, as in Figure 7, is sliding down a vertical wall in
such a way that the instantaneous rate of change of the angle x between the horizontal ground
and the top of the ladder is −0.3 radians per minute when the angle is x = 1.1 radians. How fast
is the top of the ladder falling at that moment?

10 feet

w

h

x

Wall

FIGURE 7

Answer: sin x = h

10
● h = 10 sin x ● dh

dt
= d

dt
(10 sin x) = 10 cos x dx

dt
●

x = 1.1 and dx

dt
= −0.3 ● dh

dt
= 10 cos(1.1)(−0.3) = −3 cos(1.1) ● �e top of the ladder is falling at the rate of

3 cos(1.1) ≐ 1.36 feet per minute.

Derivatives of the tangent, cotangent, secant, and cosecant
�e derivatives of y = tan x , y = cot x , y = sec x, and y = csc x can be found by using the Quotient Rule and
the Chain Rule for powers with the formulas for the derivatives of y = sin x and y = cos x.
�eorem 8 At all values of x where the denominators are not zero,

d

dx
(tan x) = sec2 x

d

dx
(cot x) = − csc2 x

d

dx
(sec x) = sec x tan x

d

dx
(csc x) = − csc x cot x .

�ese rules follow from the di�erentiation formulas for the sine and cosine and the Pythagorean

identity cos2 x + sin2 x = 1.

d

dx
(tan x) = d

dx
[ sin x
cos x

] = cos x
d

dx
(sin x) − sin x d

dx
(cos x)

cos2 x

= cos2 x + sin2 x
cos2 x

= 1

cos2 x
= sec2 x
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d

dx
(cot x) = d

dx
[cos x
sin x

] = sin x
d

dx
(cos x) − cos x d

dx
(sin x)

sin2 x

= − sin2 x − cos2 x
sin2 x

= −1
sin2 x

= − csc2 x .
d

dx
(sec x) = d

dx
[(cos x)−1] = −(cos x)−2 d

dx
(cos x)

= sin x(cos x)2 = 1

cos x

sin x

cos x
= sec x tan x

d

dx
(csc x) = d

dx
[(sin x)−1] = −(sin x)−2 d

dx
(sin x)

= − cos x(sin x)2 = − 1

sin x

cos x

sin x
= − csc x cot x .

Example 16 Give an equation of the tangent line to y = tan x at x = 0.
Answer: Tangent line: y = f (0) + f ′(0)x ● f ′(x) = sec2 x ● f (0) = tan(0) = 0 and
f ′(0) = sec2(0) = 1/ cos2(0) = 1 ● Tangent line: y = x ● Figure 7

x

y

−2

2

3
2
π− 3

2
π

y = tan x
FIGURE 7

Applying the Chain Rule to the formulas in �eorem 8 shows that at any x where u = u(x) has a
derivative and no denominator in the formula is zero,

d

dx
(tanu) = d

du
(tanu) du

dx
= sec2 u du

dx

d

dx
(cotu) = d

du
(cotu) du

dx
= − csc2 u du

dx

d

dx
(secu) = d

du
(secu) du

dx
= secu tanu

du

dx

d

dx
(csc u) = d

du
(cscu) du

dx
= − cscu cotu

du

dx
.
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Example 17 A lighthouse is two miles from a pier on a line perpendicular to the straight shore (Figure 8).
�e beam of light from the lighthouse rotates at the constant rate of three radians per minute.
(a) Give a formula for the distance s from the pier to the place where the beam of light hits the
shore in terms of the angle θ in Figure 8. (b) How fast is the beam of light moving along the
shore when θ = 0.9 radians?

Lighthouse

2 miles
θ

Pier Shore

Light beam

s
FIGURE 8

Answer: (a) tan θ = s

2
● s = 2 tan θ

(b)
ds

dt
= d

dt
(2 tan θ) = 2 sec2 θ dθ

dt
● Set θ = 0.9 and dθ

dt
= 3. ● At the moment in question,

ds

dt
= 2 sec2(0.9)(3) = 6

cos2(0.9) ≐ 15.52 miles per minute

Derivatives of the inverse sine and tangent
�e derivatives of the inverse sine and inverse tangent functions are given in the next theorem.

�eorem 9 �e derivatives of y = sin−1 x and y = tan−1 x are

d

dx
(sin–1 x) = 1√

1 − x2 for −1 < x < 1
d

dx
(tan–1 x) = 1

1 + x2 for all x.

We take x-derivatives of both sides of the identity

sin(sin–1 x) = x for − 1 < x < 1
to obtain

d

dx
[sin(sin–1 x)] = d

dx
(x)

which, with the Chain Rule yields

cos(sin–1 x) d
dx
(sin–1 x) = 1.

�e Pythagorean identity sin2 θ + cos2 θ = 1 then gives

cos(sin–1 x) =√1 − sin2(sin–1 x) =√1 − x2.
Here we use the fact that − 1

2
π ≤ sin–1 x ≤ 1

2
π, which implies that cos(sin–1 x) is ≥ 0. Combining the last

formulas gives
√
1 − x2 d

dx
(sin–1 x) = 1 which then gives the formula

d

dx
(sin–1 x) = 1√

1 − x2 for the
derivative of the inverse sine function.
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Similarly, taking x-derivatives of both sides of the identity tan(tan–1 x) = x yields

d

dx
[tan(tan–1)] = d

dx
(x)

and then

sec2(tan–1 x) d
dx
(tan–1 x) = 1.

�e Pythagorean identity sec2 θ = 1 + tan2 θ enables us to make the substitution,

sec2(tan–1 x) = 1 + tan2(tan–1 x) = 1 + x2
which gives (1 + x2) d

dx
(tan–1 x) = 1 and then the necessary formula

d

dx
(tan–1 x) = 1

1 + x2 .
Example 18 What is the derivative of y = sin–1 x at x = 0?

Answer: y′(x) = dy

dx
= d

dx
(sin–1 x) = 1√

1 − x2 ● y′(0) = 1
Example 19 Give an equation of the tangent line to y = tan–1 x at x = 1.

Answer: For y(x) = tan–1 x, y(1) = tan–1(1) = 1
4
π, y′(x) = 1/(1 + x2), and y′(1) = 1

2
. �e tangent line is

y = 1
4
π + 1

2
(x − 1) (Figure 10)

x1

y
y = tan–1 x

y = 1
2
π

y = − 1
2
πFIGURE 10

�e Chain Rule with inverse sine and inverse tangent functions
�eorem 9 and the Chain Rule give, for functions u = u(x),

d

dx
[sin–1 u] = 1√

1 − u2
du

dx

d

dx
(tan–1 u) = 1

1 + u2
du

dx
.

Example 20 Find the derivatives of (a) y = sin−1(x2) and (b) y = (sin–1 x)3.
Answer: (a)

d

dx
[sin−1(x2)] = 1√

1 − (x2)2
d

dx
(x2) = 2x√

1 − x4

(b)
d

dx
[(sin–1 x)3] = 3 (sin–1 x)2 d

dx
(sin–1 x) = 3 (sin–1 x)2√

1 − x2
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Example 21 (a) Express ψ in Figure 11 in terms of y. (b) What is
dψ

dt
at a time when y = 2 meters and

dy

dt
= 3 meters per minute?

1 meter

y

ψ

FIGURE 11

Answer: (a) tanψ = y

1
= y ● ψ = tan–1(y) radians (b)

dψ

dt
= 1

1 + y2
dy

dt
● At the time in question:

dψ

dt
= 1

1 + 22 (3) = 3
5
radians per minute

Interactive Examples

Work the following Interactive Examples on the class web page, http//www.math.ucsd.edu/∽ ashenk/
(�e chapter and section numbers on this site do not match those in the textbook for the class.)

Section 3.2: 1–3

Section 3.3: 3–5

Section 3.5: 1–5

Section 3.6: 1, 2, 4


