Math 20A. Lecture 6.

Compound interest

Theorem 1 Suppose that deposit of B_{0} dollars is made at at time $t=0$ (years) in a bank account that pays $P \%$ annual interest compounded n times a year. Let $r=\frac{P}{100}$ denote the fraction that corresponds to $P \%$. At time $t=\frac{1}{n}, \frac{2}{n}, \frac{3}{n}, \ldots$ the balance is

$$
\begin{equation*}
B=B_{0}\left(1+\frac{r}{n}\right)^{n t} \quad \text { dollars. } \tag{1}
\end{equation*}
$$

Every one- nth of a year the fraction r / n of the current balance is paid in interest and the balance is increased by the factor $\left(1+\frac{r}{n}\right)$. After t years this has occurred $n t$ times, raising the balance to the amount in formula (1).
Example 1 According to legend, the Dutch colonist Peter Minuit paid $\$ 24$ to buy Manhattan from the Indians in 1626. How much would this investment have become as of year 2010 if it had been kept in a savings account that paid 5% annual interest compounded semi-annually?
Answer: Let $t=0$ correspond to 1626 . - Then $t=2010-1626=384$ in year 2000. Use (1) with $B_{0}=24, r=0.05, n=2$, and $t=384$. - The investment would have grown to $24\left(1+\frac{0.05}{2}\right)^{2(384)}=24\left(1.025^{768}\right) \doteq 4.13 \times 10^{9}$ or approximately 4 billion dollars.

The number e

We number e, which is as important to the calculus of exponential functions and logarithms as the number π is to trigonometry, is defined as the limit,

$$
\begin{equation*}
e=\lim _{t \rightarrow \infty}\left(1+\frac{1}{t}\right)^{t} . \tag{2}
\end{equation*}
$$

It is difficult to prove that this limit exists because the base $(1+1 / t)$ in the expression $(1+1 / t)^{t}$ decreases toward 1 as the exponent t increases toward ∞. The proof is given in advanced calculus courses. The number e has the decimal expansion,

$$
e=2.71828182846 \ldots
$$

Formula (2) has the following generalization:
Theorem 2 For any real number x,

$$
\begin{equation*}
e^{x}=\lim _{t \rightarrow \infty}\left(1+\frac{x}{t}\right)^{t} . \tag{3}
\end{equation*}
$$

To derive (3) from (2) for a fixed positive x, we set $s=t / x$. Then $t=s x, x / t=1 / s$, and $s \rightarrow \infty$ as $t \rightarrow \infty$, so that by (2)

$$
\lim _{t \rightarrow \infty}\left(1+\frac{x}{t}\right)^{t}=\lim _{s \rightarrow \infty}\left(1+\frac{1}{s}\right)^{s x}=\left[\lim _{s \rightarrow \infty}\left(1+\frac{1}{s}\right)^{s}\right]^{x}=e^{x}
$$

Equation (3) can be derived similarly for $x<0$ and is valid at $x=0$, where both sides equal 1 .

Interest compounded continuously

The limit as $n \rightarrow \infty$ of the balance (1) with interest is compounded n times a year is referred to as the balance when interest is COMPOUNDED CONTINUOUSLY:

$$
\left[\begin{array}{c}
\text { Balance at time } t \text { with interest } \\
\text { compounded continuously }
\end{array}\right]=\lim _{n \rightarrow \infty}\left[B_{0}\left(1+\frac{r}{n}\right)^{n t}\right] .
$$

We can find this limit by using Theorem 2.
Theorem 3 Suppose that a deposit of B_{0} dollars is made at time $t=0$ (years) in an account that pays $P \%$ annual interest compounded continuously. Set $r=\frac{1}{100} P$. Then the balance at time $t>0$ is

$$
\begin{equation*}
B(t)=B_{0} e^{r t} \text { dollars. } \tag{4}
\end{equation*}
$$

To derive this formula we write

$$
\lim _{n \rightarrow \infty}\left[B_{0}\left(1+\frac{r}{n}\right)^{n t}\right]=B_{0}\left\{\lim _{n \rightarrow \infty}\left[B_{0}\left(1+\frac{r}{n}\right)^{n}\right]\right\}^{t}=B_{0}\left(e^{r}\right)^{t}=B_{0} e^{r t} .
$$

Example 2 Suppose that deposit of $\$ 100$ is made at $t=0$ in an account that earns 50% annual interest.
(a) What is the balance at $t=0,1,2,3,4$ and 5 if the interest is compounded annually?
(b) What is the balance at time $t>0$ if the interest is compounded continuous;y?

$$
\begin{aligned}
& \text { Answer: (a) The balance is increased by the factor } 1.5 \text { every year. } \bullet B(0)=100 \bullet B(1)=100(1.5)=150 \\
& B(2)=150(1.5)=225 \bullet B(3)=225(1.5)=337.5 \bullet B(4)=337.5(1.5)=506.25 \bullet \\
& B(5)=506.25(1.5)=759.375\left(\text { (b) } r=\frac{1}{100}(5)=0.5 \bullet B(t)=100 e^{0.5 t}\right.
\end{aligned}
$$

The smooth curve in Figures 1 and 2 is the graph of the balance $B=100 e^{0.5 t}$ from Example 2 with interest compounded continuously. The five horizontal line segments in Figure 1 form the graph of the balance with interest compounded annually ($n=1$), and the five horizontal line segments in Figure 1 form the graph of the balance with interest compounded semi-annually $(n=2)$. You can visualize that the graph with interest compounded n times a year would approach the smooth curve as $n \rightarrow \infty$.

FIGURE 1

FIGURE 2

Derivatives of logarithms

We will use the definition of the number e to find a formula for derivatives of logarithms.
Theorem 4 Suppose that b is an arbitrary constant >1. Then for all $x>0$,

$$
\begin{equation*}
\frac{d}{d x}\left(\log _{b} x\right)=\frac{\log _{b} e}{x} \tag{5}
\end{equation*}
$$

We first use the rule $\log _{b}(A / B)=\log _{b} A-\log _{b} B$ with $A=x+\Delta x$ and $B=x$ to rewrite the difference quotient,

$$
\begin{aligned}
\frac{\log _{b}(x+\Delta x)-\log _{b} x}{\Delta x} & =\frac{1}{\Delta x}\left[\log _{b}(x+\Delta x)-\log _{b} x\right] \\
& =\frac{1}{\Delta x} \log _{b}\left(\frac{x+\Delta x}{x}\right)=\frac{1}{\Delta x} \log _{b}\left(1+\frac{\Delta x}{x}\right) .
\end{aligned}
$$

Next, we set $\Delta x=x / t$ with a positive constant t, so that

$$
\frac{1}{\Delta x}=\frac{t}{x} \quad \text { and } \quad \frac{\Delta x}{x}=\frac{1}{t}
$$

and, with the rule $t \log _{b}(A)=\log _{b}\left(A^{t}\right)$, we obtain

$$
\frac{\log _{b}(x+\Delta x)-\log _{b} x}{\Delta x}=\frac{t}{x} \log _{b}\left(1+\frac{1}{t}\right)=\frac{1}{x} \log _{b}\left[\left(1+\frac{1}{t}\right)^{t}\right]
$$

Because x is fixed and positive, we can have $\Delta x=x / t$ tend to 0 from the right by having t tend to ∞. Then, since $y=\log _{b} x$ is continuous for $x>0$,

$$
\begin{aligned}
\lim _{\Delta x \rightarrow 0^{+}} \frac{\log _{b}(x+\Delta x)-\log _{b} x}{\Delta x} & =\lim _{t \rightarrow \infty} \frac{1}{x} \log _{b}\left[\left(1+\frac{1}{t}\right)^{t}\right] \\
& =\frac{1}{x} \log _{b}\left[\lim _{t \rightarrow \infty}\left(1+\frac{1}{t}\right)^{t}\right]=\frac{\log _{b} e}{x} .
\end{aligned}
$$

It can be shown that the same limit is obtained for the one-sided limit as $\Delta x \rightarrow 0^{-}$, so that (5) is valid.
Formula (5) has the simplest form if $b=e$ since $\log _{e} e=1$. The logarithm to the base $e y=\log _{e} x$ is called the natural logarithm and is denoted $y=\ln x$. Theorem 4 gives the following result.

Theorem 5 For $x>0$,

$$
\begin{equation*}
\frac{d}{d x}(\ln x)=\frac{1}{x} . \tag{6}
\end{equation*}
$$

Example 3 Find an equation of the tangent line to $y=\ln x$ at $x=2$.

$$
\begin{aligned}
& \text { Answer: Set } y(x)=\ln x \text {. • Tangent line: } y=y(2)+y^{\prime}(2)(x-2) \bullet y(2)=\ln (2) \bullet y^{\prime}(x)=1 / x \text { • } \\
& y^{\prime}(2)=\frac{1}{2} \text { • Tangent line: } y=\ln (2)+\frac{1}{2}(x-2)
\end{aligned}
$$

Instead of using Theorem 1 to find derivatives of the logarithm to the base b, we use Theorem 5 and the rule,

$$
\log _{b} x=\frac{\log _{e} x}{\log _{e} b}=\frac{\ln x}{\ln b} .
$$

Example 4 What is the rate of change of $y=\log _{10} x$ with respect to x at $x=3$?

$$
\text { Answer: } y^{\prime}(x)=\frac{d}{d x}\left[\log _{10} x\right]=\frac{d}{d x}\left(\frac{\ln x}{\ln (10)}\right)=\frac{1}{\ln (10) x} \bullet y^{\prime}(3)=\frac{1}{3 \ln (10)}
$$

Derivatives of logarithms of functions

The Chain Rule from the last lecture and formula (6) yield the following formula for positive differentiable functions $u=u(x)$:

$$
\begin{equation*}
\frac{d}{d x}(\ln u)=\frac{d}{d u}(\ln u) \frac{d u}{d x}=\frac{1}{u} \frac{d u}{d x} . \tag{7}
\end{equation*}
$$

Example 5 (a) What is the domain of $y=\ln \left(x^{2}+1\right)$? (b) What is its x-derivative?
Answer: (a) $y=\ln \left(x^{2}+1\right)$ is defined for all x because $u=x^{2}+1$ is positive for all x.
(b) $\frac{d}{d x}\left[\ln \left(x^{2}+1\right)\right]=\frac{1}{x^{2}+1} \frac{d}{d x}\left(x^{2}+1\right)=\frac{2 x}{x^{2}+1}$

Example 6 What is the derivative of $y=x^{2} \ln (3 x+1)$?
Answer: Product and Chain Rules: $\frac{d}{d x}\left[x^{2} \ln (3 x+1)\right]=\ln (3 x+1) \frac{d}{d x}\left(x^{2}\right)+x^{2} \frac{d}{d x}[\ln (3 x+1)]$
$=2 x \ln (3 x+1)+x^{2} \frac{1}{3 x+1} \frac{d}{d x}(3 x+1)=2 x \ln (3 x+1)+\frac{3 x^{2}}{3 x+1}$
Example 7 The pH of a solution with hydrogen-ion concentration C moles per liter is $y=-\log _{10} C$. A solution contains 5×10^{-9} moles of hydrogen ions per liter at a time when its hydrogen-ion concentration is decreasing 5×10^{-10} moles per liter per hour. At what rate is the pH of the solution increasing or decreasing at that moment?
Answer: Let $C=C(t)$ be the hydrogen-ion concentration at time t. - The pH of the solution at time t is
$y=-\log _{10}[C(t)]=\frac{-\ln x}{\ln (10)}$. $\frac{d y}{d t}=\frac{d}{d t}\left(-\frac{\ln C}{\ln (10)}\right)=-\frac{1}{\ln (10)} \frac{d}{d t}(\ln C)=\frac{-1}{C \ln (10)} \frac{d C}{d t}$ -
At the moment in question, $C=5 \times 10^{-9}$ and $\frac{d C}{d t}=-5 \times 10^{-10} \cdot \frac{d y}{d t}=\frac{-1}{\left(5 \times 10^{-9}\right) \ln (10)}\left(-5 \times 10^{-10}\right)=\frac{1}{10 \ln (10)}$

- The pH of the solution is increasing $\frac{1}{10 \ln (10)} \doteq 0.043 \mathrm{pH}$-units per hour.

Derivative of $y=e^{x}$

We use the formula for the derivative of the natural logarithm and the rule for finding derivatives of inverse functions from the last lecture to find the derivative of $y=x^{x}$.

Theorem $6 y=e^{x}$ has a derivative for all x, given by

$$
\begin{equation*}
\frac{d}{d x}\left(e^{x}\right)=e^{x} . \tag{8}
\end{equation*}
$$

Since the inverse of $y=e^{x}$ is $x=\ln y$

$$
\frac{d}{d x}\left(e^{x}\right)=\frac{1}{\frac{d}{d y}(\ln y)}=\frac{1}{1 / y}=y=e^{x}
$$

and this is equation (8).

Example 8 Give an equation of the tangent line to $y=e^{x}$ at $x=2$ and draw it with the curve.
Answer: Tangent line: $y=y(2)+y^{\prime}(2)(x-2)$ - $y(2)=e^{2}$ - $y^{\prime}(x)=e^{x}$ - $y^{\prime}(2)=e^{2}$ -
Tangent line: $y=e^{2}+e^{2}(x-2)$ - Figure 3

FIGURE 3

The derivative of $y=e^{u(x)}$

Theorem 6 and the Chain Rule imply that if $u=u(x)$ has a derivative at x, then $y=e^{u(x)}$ has a derivative at x, given by

$$
\begin{equation*}
\frac{d}{d x}\left(e^{u}\right)=\frac{d}{d u}\left(e^{u}\right) \frac{d u}{d x}=e^{u} \frac{d u}{d x} \tag{9}
\end{equation*}
$$

Remember this result verbally: The x-derivative of e raised to the power u for a function $u=u(x)$ equals e raised to the power u, multiplied by the x-derivative of u.
Example 9 What is the x-derivative of $y=e^{x^{3}}$?
Answer: $\frac{d}{d x}\left(e^{x^{3}}\right)=e^{x^{3}} \frac{d}{d x}\left(x^{3}\right)=3 x^{2} e^{x^{3}}$
Example 10 Atmospheric pressure at the height h (miles) above the surface of the earth is $p=1.5 e^{-0.2 h}$ pounds per square inch. (Data Adapted from the Encyclopædia Britannica.) What is the rate of change with respect to time of the atmospheric pressure on a weather balloon when it is one mile in the air and is rising 0.1 miles per hour?
Answer: Let $h=h(t)$ (miles) be the height of the balloon at time t (hours). -
$\frac{d p}{d t}=\frac{d}{d t}\left(1.5 e^{-0.2 h}\right)=1.5 e^{-0.2 h} \frac{d}{d t}(-0.2 h)=-1.5(0.2) e^{-0.2 h} \frac{d h}{d t}=-0.3 e^{-0.2 h} \frac{d h}{d t}$ - At the moment in question, $h=1$ and $\frac{d h}{d t}=0.1 \bullet \frac{d p}{d t}=-0.3 e^{-0.2(1)}(0.1)=-0.03 e^{-0.2} \doteq-0.025$ pounds per square inch per hour
Example 11 What is the derivative of $y=\frac{e^{-x}}{x}$?
Answer: $\frac{d y}{d x}=\frac{d}{d x}\left(\frac{e^{-x}}{x}\right)=\frac{x \frac{d}{d x}\left(e^{-x}\right)-e^{-x} \frac{d}{d x}(x)}{x^{2}}=\frac{x e^{-x} \frac{d}{d x}(-x)-e^{-x}}{x^{2}}=\frac{-x e^{-x}-e^{-x}}{x^{2}}$

The derivatives of $y=\sin x$ and $y=\cos x$

Consider an angle with its vertex at the center of a circle as in Figure 4. Its sides intersect the circle at points P and Q, which are the endpoints of a chord of length $\overline{P Q}$ and an arc of length $\widehat{P Q}$. In order to derive formulas for the derivatives of $\sin x$ and $\cos x$, we need to show that the ratio of these numbers tends to 1 as the points come together:

$$
\begin{equation*}
\lim _{P \rightarrow Q} \frac{\overline{P Q}}{\overline{P Q}}=1 \tag{10}
\end{equation*}
$$

To see why this is true, consider the case where the chord $P Q$ is one side of an polygon with n equal sides that is inscribed in the circle, as shown in Figure 4 for $n=6$. The chord length $\overline{P Q}$ is one- nth of the perimeter of the polygon and the arclength $\widehat{P Q}$ is one- nth of the circumference of the circle, so that

$$
\begin{aligned}
\frac{\overline{P Q}}{\overline{P Q}} & =\frac{[\text { Perimeter of the } n \text {-sided polygon }] / n}{[\text { Circumference of the circle }] / n} \\
& =\frac{\text { Perimeter of the } n \text {-sided polygon }}{\text { Circumference of the circle }}
\end{aligned}
$$

Since the perimeter of the polygon tends to the circumference of the circle as n tends to ∞, this quantity tends to 1 and (10) holds.

FIGURE 4

FIGURE 5

Theorem 7 The functions $y=\sin x$ and $y=\cos x$ have derivatives for all x given by

$$
\begin{gathered}
\frac{d}{d x}(\sin x)=\cos x \\
\frac{d}{d x}(\cos x)=-\sin x
\end{gathered}
$$

To derive these formulas, we consider a fixed, acute angle x and small positive Δx as in Figure 6. The point $P=(\cos x, \sin x)$ is on the unit circle at the angle x and $Q=(\cos (x+\Delta x), \sin (x+\Delta x))$ is on the circle at the angle $x+\Delta x$. Then, with R the vertex at the right angle in the triangle in the drawing,

$$
\begin{aligned}
& \frac{\sin (x+\Delta x)-\sin x}{\Delta x}=\frac{\overline{P Q}}{\widehat{P Q}} \frac{\overline{R Q}}{\overline{P Q}}=\frac{\overline{P Q}}{\widetilde{P Q}} \cos \alpha \\
& \frac{\cos (x+\Delta x)-\cos x}{\Delta x}=-\frac{\overline{P Q}}{\widehat{P Q}} \frac{\overline{R P}}{\overline{P Q}}=-\frac{\overline{P Q}}{\widehat{P Q}} \sin \alpha
\end{aligned}
$$

where α is the angle at Q in the right triangle in Figure 6 . This angle equals the angle of inclination of the perpendicular bisector $O S$ of the chord $P Q$ because the radius and chord are perpendicular. consequently, α equals $x+\frac{1}{2} \Delta x$ and tends to x as $\Delta x \rightarrow 0^{+}$. Also $\overline{P Q} / \widehat{P Q} \rightarrow 1$ by (10), and $\cos \alpha \rightarrow \cos x$ and $\sin \alpha \rightarrow \sin x$ since these functions are continuous. Therefore,

$$
\begin{aligned}
& \lim _{\Delta x \rightarrow 0^{+}} \frac{\sin (x+\Delta x)-\sin x}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left(\frac{\overline{P Q}}{\overline{P Q}} \cos \alpha\right)=\cos x \\
& \lim _{\Delta x \rightarrow 0^{+}} \frac{\cos (x+\Delta x)-\cos x}{\Delta x}=\lim _{\Delta x \rightarrow 0}\left(-\frac{\overline{P Q}}{\widetilde{P Q}} \sin \alpha\right)=-\sin x .
\end{aligned}
$$

FIGURE 6

Example 12 What is the derivative $\frac{d}{d x}(5 \sin x-6 \cos x)$?

$$
\text { Answer: } \frac{d}{d x}(5 \sin x-6 \cos x)=5 \frac{d}{d x}(\sin x)-6 \frac{d}{d x}(\cos x)=5 \cos x+6 \sin x
$$

The Chain Rule combined with Theorem 7 yields the following formulas for the x-derivatives of $y=\sin u$ and $y=\cos u$, where u is a differentiable function of x :

$$
\begin{aligned}
& \frac{d}{d x}(\sin u)=\frac{d}{d u}(\sin u) \frac{d u}{d x}=\cos u \frac{d u}{d x} \\
& \frac{d}{d x}(\cos u)=\frac{d}{d u}(\cos u) \frac{d u}{d x}=-\sin u \frac{d u}{d x}
\end{aligned}
$$

Example 13 Find the derivative of $y=\sin \left(x^{1 / 2}\right)$.
Answer: $\frac{d y}{d x}=\frac{d}{d x}\left[\sin \left(x^{1 / 2}\right)\right]=\cos \left(x^{1 / 2}\right) \frac{d}{d x}\left(x^{1 / 2}\right)=\frac{1}{2} x^{-1 / 2} \cos \left(x^{1 / 2}\right)$
Example 14 What is $y^{\prime}(10)$ for $y=\cos (u(x))$ if $u(10)=\frac{1}{2} \pi$ and $u^{\prime}(10)=3$?
Answer: $y^{\prime}=(\cos u)^{\prime}=-\sin u u^{\prime}$ - At $x=10: y^{\prime}(10)=-\sin (u(10)) u^{\prime}(10)=-\sin \left(\frac{1}{2} \pi\right)(3)=-3$
Example 15 Suppose that the top of a ten-foot-long ladder, as in Figure 7, is sliding down a vertical wall in such a way that the instantaneous rate of change of the angle x between the horizontal ground and the top of the ladder is -0.3 radians per minute when the angle is $x=1.1$ radians. How fast is the top of the ladder falling at that moment?

FIGURE 7

Answer: $\sin x=\frac{h}{10}$ - $h=10 \sin x \quad$ - $\frac{d h}{d t}=\frac{d}{d t}(10 \sin x)=10 \cos x \frac{d x}{d t}$ •
$x=1.1$ and $\frac{d x}{d t}=-0.3$ • $\frac{d h}{d t}=10 \cos (1.1)(-0.3)=-3 \cos (1.1)$ - The top of the ladder is falling at the rate of $3 \cos (1.1) \doteq 1.36$ feet per minute.

Derivatives of the tangent, cotangent, secant, and cosecant

The derivatives of $y=\tan x, y=\cot x, y=\sec x$, and $y=\csc x \operatorname{can}$ be found by using the Quotient Rule and the Chain Rule for powers with the formulas for the derivatives of $y=\sin x$ and $y=\cos x$.

Theorem 8 At all values of x where the denominators are not zero,

$$
\begin{aligned}
& \frac{d}{d x}(\tan x)=\sec ^{2} x \\
& \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
& \frac{d}{d x}(\sec x)=\sec x \tan x \\
& \frac{d}{d x}(\csc x)=-\csc x \cot x .
\end{aligned}
$$

These rules follow from the differentiation formulas for the sine and cosine and the Pythagorean identity $\cos ^{2} x+\sin ^{2} x=1$.

$$
\begin{aligned}
\frac{d}{d x}(\tan x) & =\frac{d}{d x}\left[\frac{\sin x}{\cos x}\right]=\frac{\cos x \frac{d}{d x}(\sin x)-\sin x \frac{d}{d x}(\cos x)}{\cos ^{2} x} \\
& =\frac{\cos ^{2} x+\sin ^{2} x}{\cos ^{2} x}=\frac{1}{\cos ^{2} x}=\sec ^{2} x
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{d x}(\cot x) & =\frac{d}{d x}\left[\frac{\cos x}{\sin x}\right]=\frac{\sin x \frac{d}{d x}(\cos x)-\cos x \frac{d}{d x}(\sin x)}{\sin ^{2} x} \\
& =\frac{-\sin ^{2} x-\cos ^{2} x}{\sin ^{2} x}=\frac{-1}{\sin ^{2} x}=-\csc ^{2} x . \\
\frac{d}{d x}(\sec x) & =\frac{d}{d x}\left[(\cos x)^{-1}\right]=-(\cos x)^{-2} \frac{d}{d x}(\cos x) \\
& =\frac{\sin x}{(\cos x)^{2}}=\frac{1}{\cos x} \frac{\sin x}{\cos x}=\sec x \tan x \\
\frac{d}{d x}(\csc x) & =\frac{d}{d x}\left[(\sin x)^{-1}\right]=-(\sin x)^{-2} \frac{d}{d x}(\sin x) \\
& =\frac{-\cos x}{(\sin x)^{2}}=-\frac{1}{\sin x} \frac{\cos x}{\sin x}=-\csc x \cot x .
\end{aligned}
$$

Example 16 Give an equation of the tangent line to $y=\tan x$ at $x=0$.
Answer: Tangent line: $y=f(0)+f^{\prime}(0) x$ - $f^{\prime}(x)=\sec ^{2} x \bullet f(0)=\tan (0)=0$ and $f^{\prime}(0)=\sec ^{2}(0)=1 / \cos ^{2}(0)=1$ - Tangent line: $y=x$ - Figure 7

$$
y=\tan x
$$

FIGURE 7

Applying the Chain Rule to the formulas in Theorem 8 shows that at any x where $u=u(x)$ has a derivative and no denominator in the formula is zero,

$$
\begin{aligned}
& \frac{d}{d x}(\tan u)=\frac{d}{d u}(\tan u) \frac{d u}{d x}=\sec ^{2} u \frac{d u}{d x} \\
& \frac{d}{d x}(\cot u)=\frac{d}{d u}(\cot u) \frac{d u}{d x}=-\csc ^{2} u \frac{d u}{d x} \\
& \frac{d}{d x}(\sec u)=\frac{d}{d u}(\sec u) \frac{d u}{d x}=\sec u \tan u \frac{d u}{d x} \\
& \frac{d}{d x}(\csc u)=\frac{d}{d u}(\csc u) \frac{d u}{d x}=-\csc u \cot u \frac{d u}{d x} .
\end{aligned}
$$

Example 17 A lighthouse is two miles from a pier on a line perpendicular to the straight shore (Figure 8). The beam of light from the lighthouse rotates at the constant rate of three radians per minute. (a) Give a formula for the distance s from the pier to the place where the beam of light hits the shore in terms of the angle θ in Figure 8. (b) How fast is the beam of light moving along the shore when $\theta=0.9$ radians?

FIGURE 8

Answer: (a) $\tan \theta=\frac{s}{2}$ - $s=2 \tan \theta$
(b) $\frac{d s}{d t}=\frac{d}{d t}(2 \tan \theta)=2 \sec ^{2} \theta \frac{d \theta}{d t}$ - Set $\theta=0.9$ and $\frac{d \theta}{d t}=3$. - At the moment in question, $\frac{d s}{d t}=2 \sec ^{2}(0.9)(3)=\frac{6}{\cos ^{2}(0.9)} \doteq 15.52$ miles per minute

Derivatives of the inverse sine and tangent

The derivatives of the inverse sine and inverse tangent functions are given in the next theorem.
Theorem 9 The derivatives of $y=\sin ^{-1} x$ and $y=\tan ^{-1} x$ are

$$
\begin{aligned}
\frac{d}{d x}\left(\sin ^{-1} x\right) & =\frac{1}{\sqrt{1-x^{2}}} \text { for }-1<x<1 \\
\frac{d}{d x}\left(\tan ^{-1} x\right) & =\frac{1}{1+x^{2}} \text { for all } x
\end{aligned}
$$

We take x-derivatives of both sides of the identity

$$
\sin \left(\sin ^{-1} x\right)=x \text { for }-1<x<1
$$

to obtain

$$
\frac{d}{d x}\left[\sin \left(\sin ^{-1} x\right)\right]=\frac{d}{d x}(x)
$$

which, with the Chain Rule yields

$$
\cos \left(\sin ^{-1} x\right) \frac{d}{d x}\left(\sin ^{-1} x\right)=1
$$

The Pythagorean identity $\sin ^{2} \theta+\cos ^{2} \theta=1$ then gives

$$
\cos \left(\sin ^{-1} x\right)=\sqrt{1-\sin ^{2}\left(\sin ^{-1} x\right)}=\sqrt{1-x^{2}}
$$

Here we use the fact that $-\frac{1}{2} \pi \leq \sin ^{-1} x \leq \frac{1}{2} \pi$, which implies that $\cos \left(\sin ^{-1} x\right)$ is ≥ 0. Combining the last formulas gives $\sqrt{1-x^{2}} \frac{d}{d x}\left(\sin ^{-1} x\right)=1$ which then gives the formula $\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}}$ for the derivative of the inverse sine function.

Similarly, taking x-derivatives of both sides of the identity $\tan \left(\tan ^{-1} x\right)=x$ yields

$$
\frac{d}{d x}\left[\tan \left(\tan ^{-1}\right)\right]=\frac{d}{d x}(x)
$$

and then

$$
\sec ^{2}\left(\tan ^{-1} x\right) \frac{d}{d x}\left(\tan ^{-1} x\right)=1
$$

The Pythagorean identity $\sec ^{2} \theta=1+\tan ^{2} \theta$ enables us to make the substitution,

$$
\sec ^{2}\left(\tan ^{-1} x\right)=1+\tan ^{2}\left(\tan ^{-1} x\right)=1+x^{2}
$$

which gives $\left(1+x^{2}\right) \frac{d}{d x}\left(\tan ^{-1} x\right)=1$ and then the necessary formula $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$.
Example 18 What is the derivative of $y=\sin ^{-1} x$ at $x=0$?
Answer: $y^{\prime}(x)=\frac{d y}{d x}=\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} \bullet y^{\prime}(0)=1$
Example 19 Give an equation of the tangent line to $y=\tan ^{-1} x$ at $x=1$.
Answer: For $y(x)=\tan ^{-1} x, y(1)=\tan ^{-1}(1)=\frac{1}{4} \pi, y^{\prime}(x)=1 /\left(1+x^{2}\right)$, and $y^{\prime}(1)=\frac{1}{2}$. The tangent line is $y=\frac{1}{4} \pi+\frac{1}{2}(x-1)$ (Figure 10)

FIGURE 10

The Chain Rule with inverse sine and inverse tangent functions

Theorem 9 and the Chain Rule give, for functions $u=u(x)$,

$$
\begin{aligned}
\frac{d}{d x}\left[\sin ^{-1} u\right] & =\frac{1}{\sqrt{1-u^{2}}} \frac{d u}{d x} \\
\frac{d}{d x}\left(\tan ^{-1} u\right) & =\frac{1}{1+u^{2}} \frac{d u}{d x}
\end{aligned}
$$

Example 20 Find the derivatives of (a) $y=\sin ^{-1}\left(x^{2}\right)$ and (b) $y=\left(\sin ^{-1} x\right)^{3}$.
Answer: (a) $\frac{d}{d x}\left[\sin ^{-1}\left(x^{2}\right)\right]=\frac{1}{\sqrt{1-\left(x^{2}\right)^{2}}} \frac{d}{d x}\left(x^{2}\right)=\frac{2 x}{\sqrt{1-x^{4}}}$
(b) $\frac{d}{d x}\left[\left(\sin ^{-1} x\right)^{3}\right]=3\left(\sin ^{-1} x\right)^{2} \frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{3\left(\sin ^{-1} x\right)^{2}}{\sqrt{1-x^{2}}}$

Example 21 (a) Express ψ in Figure 11 in terms of y. (b) What is $\frac{d \psi}{d t}$ at a time when $y=2$ meters and $\frac{d y}{d t}=3$ meters per minute?

FIGURE 11

Answer: (a) $\tan \psi=\frac{y}{1}=y \bullet \psi=\tan ^{-1}(y)$ radians (b) $\frac{d \psi}{d t}=\frac{1}{1+y^{2}} \frac{d y}{d t}$ • At the time in question: $\frac{d \psi}{d t}=\frac{1}{1+2^{2}}(3)=\frac{3}{5}$ radians per minute

Interactive Examples

Work the following Interactive Examples on the class web page, http//www.math.ucsd.edu/~ ashenk/ (The chapter and section numbers on this site do not match those in the textbook for the class.)

Section 3.2: 1-3
Section 3.3: 3-5
Section 3.5: 1-5
Section 3.6: 1, 2, 4

