
Math 20A. Lecture 8.

�e First-Derivative Test at a point
A function f is increasing at the point x0 if there are numbers a and b with a < x0 < b such that

f (x) < f (x0) for a < x < x0 and f (x0) < f (x) for x0 < x < b. Similarly, f is decreasing at the point x0 if

there are numbers a and b with a < x0 < b such that f (x) > f (x0) for a < x < x0 and f (x0) > f (x) for
x0 < x < b.

�eorem 1 (�e First-Derivative Test at a point)

(a) If f ′(x0) exists and is positive, then f is increasing at x0.

(b) If f ′(x0) exists and is negative, then f is decreasing at x0.

�is result follows easily from the de�nition of the derivative. Consider part (a).�e derivative f ′(x0)
is the limit

f (x0) = lim
x→x0

f (x) − f (x0)

x − x0
.

If this limit is positive, then there are numbers a and b with a < x0 < b such that
f (x) − f (x0)

x − x0
is positive

for a < x < x0 and for x0 < x < b.�is implies that f (x) − f (x0) is negative and f (x) < f (x0) for a < x < x0
since x − x0 is negative there.�is also implies that f (x) − f (x0) is positive and f (x) > f (x0) for x0 < x < b
where x − x0 is positive. Hence f is increasing at x0. Part (b) of the the theorem can be established with a
similar argument.

Example 1 Show that y = sin x is increasing at all numbers x with 0 < x < 1
2
π.

Answer: y = sin x is increasing at any x with 0 < x < 1
2
π since its derivative cos x is positive for all such x.

Local maxima and minima: a necessary condition
A function f has a local maximum at a point x0 if f (x0) is the greatest value of f for x in an open interval

containing x0. �e function has a local maximum at x0 if f (x0) is the least value of f for x in such an
interval.�e function f of Figure 1 has a local maximum at one negative x and a local minimum at one
positive x.
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FIGURE 1

A number x0 is called a critical point or a critical value of a function f if it is in an open interval

in the domain of f and the derivative f ′(x0) at x0 is zero or does not exist.

�eorem 2 (A First-Derivative Test for local maxima and minima) If y = f (x) has a local maximum or
local minimum at x = x0, then x0 is a critical point of f .

�is theorem holds because if f ′(x0) exists and is not zero, then f is either increasing or decreasing at
x0 and cannot have a local maximum or local minimum there.
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Example 2 �e curve in Figure 1 above is the graph of f (x) = x5 − 5x. Find its local maximum and local
minimum and the points where they occur.

Answer: �e local maximum and minimum occur at critical points of the function f (x) = x5 − 5x ●

f ′(x) = 5x4 − 5 = 5(x4 − 1) is de�ned for all x and zero where x4 − 1 = 0. ● Solve x4 − 1 = 0 to �nd the critical
points. ● �e critical points are x = 1 and x = −1. ● �e graph shows that there is a local maximum at x = −1,

where f (x) = (−1)5 − 5(−1) = 4 and a local minimum at x = 1, where f (x) = 12 − 5(1) = −4.

Example 3 �e function y = x − 2 ln x, whose graph is shown in Figure 2, has a local minimum. Find its
value and where it occurs.
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FIGURE 2

Answer: y = x − 2 ln x ● For x > 0, y′(x) =
d

dx
(x − 2 ln x) = 1 −

2

x
=
x − 2

x
● �is is zero only at x = 2. ●

�e only critical point is 2, so the function’s local minimum must occur there. ● �e value of the local minimum

is the value y(2) = 2 − 2 ln(2) ≐ 0.6137 of the function.

Because the local minimum y(2) = 2 − 2 ln(2) is the least value for all x of the function in Figure 2, it
is also the global minimum of the function.

Example 4 �e function y = 3 − ∣x∣ of Figure 3 has a local maximum at x = 0. Explain why x = 0 is a
critical point of the function.

Answer: �e function does not have a derivative at x = 0 because the di�erence quotient

y(x) − y(0)

x − 0
=
(3 − ∣x∣) − 3

x
=
−∣x∣

x
equals −1 for x > 0 and equals 1 for x < 0, so it does not have a two-sided limit

as x → 0. (You might expect that the function does not have a derivative at x = 0 because the curve is too pointed
for it to have a tangent line there.)
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�e Extreme Value and Mean Value�eorems
In order to discuss the next topic, we need two geometrically plausible results.

�eorem 3 (�e Extreme Value �eorem) If a function f is continuous on a closed �nite interval [a, b], then
f has a maximum value and a minimum value on the interval.

�is theorem states that under the given conditions there is a highest and a lowest point on the graph

y = f (x) for a ≤ x ≤ b.

�eorem 4 (�e Mean Value �eorem) Suppose that y = f (x) is continuous on the �nite closed interval

[a, b] and that f ′(x) exists for all x with a < x < b. �en there is at least one number c with
a < c < b such that

(1) f ′(c) =
f (b) − f (a)

b − a
.

�e derivative f ′(c) on the le� of equation (1) is the slope of the tangent line to the graph of f at x = c.

�e di�erence quotient
f (b) − f (a)

b − a
on the right is the slope of the secant line between the points at x = a

and x = b.�e theorem states under the given conditions there is a point c with a < c < b such that the
tangent line and secant line are parallel as in Figire 4.
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FIGURE 4 FIGURE 5

To verify the Mean Value�eorem, we let m denote the slope
f (b) − f (a)

b − a
of the secant line and

de�ne a new function g by g(x) = f (x) −mx (Figure 5). �is function is also continuous on [a, b]. It has
the same value at x = a and x = b because

g(b) − g(a) = [ f (b) −mb] − [ f (a) −ma]

= [ f (b) − f (a)] −m(b − a)

= [ f (b) − f (a)] − [ f (b) − f (a)] = 0.

Consequently, the secant line through the points at x = a and x = b on the graph of g is horizontal, as is
shown in Figure 5.
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�e funcion g has a maximum and a minimum value on [a, b] by the Extreme Value�eorem. If the

maximum is greater than g(a) = g(b), then it occurs at a point c with a < c < b and is a local maximum so

that g′(c) = 0. If the minimum is less than g(a) = g(b), then it occurs at a point c with a < c < b and is a

local minimum so that g′(c) = 0. If the maximum and minimum are both equal to g(a) = g(b), then g(x)

is constant and g′(c) = 0 for all c with a < c < b.

In any case, there is a number c with a < c < b such that g′(c) = 0. Since

g′(x) =
d

dx
[ f (x) −mx] = f ′(x) −m

this implies that f ′(c) = m and gives (1) to establish the thoerem.

Increasing and decreasing functions on an interval
A function f is increasing on an interval if f (x) increases as x increases across the interval.�is means

that f (a) < f (b) for all a and b in the interval with a < b. A function f is decreasing on an interval if

f (x) decreases as x increases across the interval.�is means that f (a) > f (b) for all a and b in the interval
with a < b.

�eorem 5 (�e First-Derivative Test on an interval)
(a) If y = f (x) is continuous on an interval and f ′(x) exists and is positive at all points in the
interior of the interval, then y = f (x) is increasing on the interval.

(b) If y = f (x) is continuous on an interval and f ′(x) exists and is negative at all points in the
interior of the interval, then y = f (x) is decreasing on the interval.

To see why this result is valid, suppose that f is continuous on an interval I and that f ′(x) exists for all
x in the interior of I. Consider any points a and b in I with a < b.�e function f is continuous on [a, b] and

f ′(x) exists for a < x < b, so that by the Mean Value �eorem, there is a number c with a < c < b such that

(3) f ′(c) =
f (b) − f (a)

b − a
.

If f ′(x) is positive for x in the interior of I, then f ′(c) and b − a are positive and equation (3) shows

that f (b) − f (a) is positive. Hence, f (b) > f (a) and, since a and b are arbitrary points in I with a < b, f is
increasing on I, as asserted in part (a) of the theorem.

If f ′(x) is negative for x in the interior of I, then the number (3) is negative. �is implies that

f (b) < f (a) for any a and b in I with a < b, so that f is decreasing on I, as stated in part (b).

Example 5 Find the intervals on which f (x) = x3 − 3x2 is increasing and decreasing.

Answer: f (x) = x3 − 3x2 is de�ned and continuous for all x. ●

f ′(x) =
d

dx
(x3 − 3x2) = 3x2 − 6x = 3x(x − 2) is zero at x = 0 and at x = 2. ● Figure 6 ●

For x < 0, the derivative 3x(x − 2) is positive because x and x − 2 are negative. ●
f is increasing on (−∞, 0]. ●
For 0 < x < 2, the derivative 3x(x − 2) is negative because x is positive and x − 2 is negative. ●
f is decreasing on [0, 2]. ●
For x > 2, the derivative 3x(x − 2) is positive because x and x − 2 are positive. ●
f is increasing on [2,∞).
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Example 6 (a) Find the limits of the function f (x) = x3 − 3x2 of Example 5 as x →∞ and as x → −∞.
(b) Use this information and the results of Example 5 to sketch the graph of f .

Answer: (a) �e limits as x → ±∞ of f (x) = x3 − 3x2 are the same as those of its highest degree term x3 because

∣x3 ∣ is much larger than x2 for large x. ● Algebraic justi�cation: For x ≠ 0, x3 − 3x2 = x3 (1 − 3

x
) ●

lim
x→∞
(x3 − 3x2) = lim

x→∞
x
3
= ∞ ● lim

x→∞
(x3 − 3x2) = lim

x→−∞
x
3
= −∞

(b) Plot the points at x = 0 and x = 2, where the derivative is zero. ● f (0) = 03 − 3(02) = 0 ●
f (2) = 23 − 3(24) = −4 ● Draw the curve through these points so it tends to −∞ as x → −∞, is increasing on

(−∞, 0], is decreasing on [0, 2], is increasing on [2,∞), and tends to∞ as x →∞. ● Figure 7
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FIGURE 7

Notice that the graph of y = x3 − 3x2 looks like the curve y = −3x3 for small ∣x∣. �is is because ∣x3∣ is

much smaller than 3x2 for very small ∣x∣.

�e Second-Derivative Test for concavity
�e portion of the graph y = f (x) for x in an open interval is concave up if the slope f ′(x) of the tangent

line at x to the graph increases as x increases across the interval (Figure 8). If the slope f ′(x) decreases as x
increases across the open interval, then that portion of the graph of the function is concave down

(Figure 9).
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�e intervals in which the graph of a function is concave up and the intervals where it is concave
down can be found by studying the function’s second derivative.

�eorem 1 (�e Second-Derivative Test for concavity)

(a) If f ′′(x) exists and is positive on an open interval, then the graph of y = f (x) is concave up
on the interval.
(b) If f ′′(x) exists and is negative in an open interval, then the graph of y = f (x) is concave
down on the interval.

�is theorem holds because f ′(x) is increasing on any open interval were f ′′(x) is positive and is

decreasing on any open interval were f ′′(x) is negative.

Example 7 Find the open intervals where the graph of the function y = x3 − 3x2 of Examples 5 and 6 is
concave up and concave down.

Answer: f (x) = x3 − 3x2 ● f ′(x) = 3x2 − 6x ● f ′′(x) = 6x − 6 = 6(x − 1) ● f ′′(x) is negative for x < 1 and
positive for x > 1. ● �e graph is concave down on (−∞, 1) and concave up on (1,∞) ● Figure 10
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A point where a curve switches from concave up to concave down or vise versa is called an
inflection point. �e point at x = 1 in Figure 10 is an in�ection point of that curve.
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Example 8 Figure 11 shows the graph of f (x) = xex . Explain its shape by determining (a) where the
function is positive and negative, (b) where it is increasing and decreasing, and (c) where its
graph is concave up and concave down. (d) What are the in�ection points of the graph?
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FIGURE 11

Answer: (a) f (x) = xex is de�ned and continuous for all x. ● It is negative for x > 0, is zero at x = 0, and is

positive for x > 0. ● �e graph is below the x-axis for x < 0, passes through the origin, and is above the x-axis for

x > 0.

(b) Product Rule: f ′(x) = d

dx
(xex ) = x d

dx
(ex) + ex d

dx
(x) = (x + 1)ex ● f ′(x) is negative for x < −1 and

positive for x > −1. ● f is decreasing on (−∞,−1] and increasing on [−1,∞).
(c) f ′′(x) = d

dx
[(x + 1)ex] = (x + 1) d

dx
(ex) + ex d

dx
(x + 1) = (x + 2)ex ● f ′′(x) is negative for x < −2 and

positive for x > −2. ● �e graph is concave down for x < −2 and concave up for x > −2.

(d) �e point (−2,−2e−2) at x = −2 on the graph is its one in�ection point.
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Example 9 Draw the graph of g(x) = 4x3 − x4 by studying the formula for the function, by determing the
largest intervals on which the function is increasing and decreasing, and by �nding the largest
open intervals on which its graph is concave up and concave down. Show any local or global
maxima and minima and any in�ection points.

Answer: �e polynomial g(x) = 4x3 − x4 is continuous for all x and has the same limits as x → ±∞ as its highest

order term y = −x4 . ● lim
x→±∞

g(x) = lim
x→±∞

(4x3 − x4) = lim
x→±∞

(−x4) = −∞ ●

g′(x) = d

dx
(4x3 − x4) = 12x2 − 4x3 = 4x2(3 − x) is zero at x = 0 and x = 3. ● Figure 12 ● g′(x) is positive for

x < 0 because x2 and (3 − x) are positive there, ● g′(x) is positive for 0 < x < 3 since x2 and 3 − x are positive

there, ● g′(x) is negative for x > 3 since x2 is positive and 3 − x is negative there. ● g is increasing on (∞, 0]
and [0, 3] and therefore on (−∞, 3]. ● g is decreasing on [3,∞). ● g(x) has a global maximum at x = 3.
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FIGURE 12 FIGURE 13

g′′(x) = d

dx
(12x2 − 4x3) = 24x − 12x2 = 12x(2 − x) is zero at x = 0 and x = 2 and has constant sign for x < 0, for

0 < x < 2, and for x > 2. ● Figure 13 ● g′′(−1) = 12(−1)(2 + 1) = −36 is negative, so g′′(x) is negative for x < 0.
● g′′(1) = 12(1)(2 − 1) = 12 is positive, so g′′(x) is positive for 0 < x < 2. ● g′′(3) = 12(3)(2 − 1) = −36 is
negative, so g′′(x) is negative for x > 2. ● �e graph is concave down for x < 0 and for x > 2, and is concave up

for 0 < x < 2. ● g(0) = 4(03) − 04 = 0 ● g(2) = 4(23) − 24 = 16 ● g(3) = 4(33) − 34 = 33 = 27. ● Figure 14

● �e graph has in�ection points at (0, 0) and (2, 16).
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Interactive Examples

Work the following Interactive Examples on the class web page, http//www.math.ucsd.edu/∽ ashenk/
(�e chapter and section numbers on this site do not match those in the textbook for the class.)

Section 4.1: 1–3

Section 4.2: 1–2

Section 4.3: 1–2

Section 4.4: 1


