Quiz 2 Solutions

1) We must determine the value of $\frac{d h}{d t}$ at the moment when $\frac{d x}{d t}$ is $1 / 10$ radian per minute and $x=\frac{1}{2}$ radian. The variables x and h are related by the equation

$$
\begin{equation*}
\sin x=\frac{h}{10} . \tag{1}
\end{equation*}
$$

Differentiating both sides of (1) with respect to t and using the Chain Rule gives

$$
\cos x \cdot \frac{d x}{d t}=\frac{1}{10} \cdot \frac{d h}{d t} .
$$

Substituting $1 / 10$ for $\frac{d x}{d t}$ and $1 / 2$ for x gives

$$
\cos (1 / 2) \cdot \frac{1}{10}=\frac{1}{10} \frac{d h}{d t}
$$

which implies $\frac{d h}{d t}=\cos (1 / 2)$. The rate of change in the length of h at the moment when $x=1 / 2$ radian and the angle x is increasing at $1 / 10$ radians per minute is $\cos (1 / 2)$ feet per second.
2) The perimeter of a right triangle, one of whose angles is x, is $10+10 \cos x+10 \sin x$. Let $P(x)=10+10 \cos x+10 \sin x$. We need to optimize P over the interval $0 \leq x \leq \frac{\pi}{2}$. We start by taking the derivative of P.

$$
P^{\prime}(x)=-10 \sin x+10 \cos x
$$

Next we solve $P^{\prime}(x)=0$ where $0 \leq x \leq \frac{\pi}{2}$.

$$
\begin{aligned}
-10 \sin x+10 \cos x & =0 \\
10 \cos x & =10 \sin x \\
\cos x & =\sin x \\
x & =\frac{\pi}{4}
\end{aligned}
$$

Evaluating P at the endpoints of the interval and the critical point $x=\pi / 4$,

$$
P(0)=20 \quad P\left(\frac{\pi}{4}\right)=10+10 \frac{\sqrt{2}}{2}+10 \frac{\sqrt{2}}{2}=10+10 \sqrt{2} \quad P\left(\frac{\pi}{2}\right)=20
$$

The maximum value of P is at $x=\frac{\pi}{4}$. The right triangle with hypotenuse of length 10 that maximizes the perimeter is an isosceles triangle.
3) (a) Using the formula $\frac{d}{d x} e^{x}=e^{x}$, the Power Rule, and linearity of the derivative,

$$
\frac{d}{d x}\left(x^{2}+e^{x}\right)=2 x+e^{x}
$$

(b) Using the formula $\frac{d}{d x} \ln x=\frac{1}{x}$ and the Product Rule,

$$
f^{\prime}(x)=x \cdot \frac{d}{d x} \ln x+\ln x \cdot \frac{d}{d x} x=x(1 / x)+\ln x \cdot 1=1+\ln x .
$$

Therefore $f^{\prime}(e)=1+\ln e=1+1=2$.
4) The equation of the tangent line at $x=1$ is $y=y(1)+y^{\prime}(1)(x-1)$. The two values that need to be computed are $y(1)$ and $y^{\prime}(1)$.

$$
y(1)=\tan ^{-1}(1)=\frac{\pi}{4} .
$$

To compute $y^{\prime}(1)$, we use the formula $\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}$ to obtain

$$
y^{\prime}=\frac{d}{d x} \tan ^{-1} x=\frac{1}{1+x^{2}}
$$

so that $y^{\prime}(1)=\frac{1}{1+1^{2}}=\frac{1}{2}$. The equation of the tangent line to $y=\tan ^{-1} x$ at $x=1$ is

$$
y=\frac{\pi}{4}+\frac{1}{2}(x-1) .
$$

5) Let x be the distance from the origin to P, let y be the distance from the origin to Q, and let z be the distance from P to Q. We must determine $\frac{d y}{d t}$ at the moment when Q is at $(0,12), P$ is at $(5,0)$, and $\frac{d z}{d t}$ is 10 . By the Pythagorean Theorem, $x^{2}+y^{2}=z^{2}$. Differentiate both sides of this equation with respect to time t to obtain

$$
\begin{equation*}
2 x \frac{d x}{d t}+2 y \frac{d y}{d t}=2 z \frac{d z}{d t} . \tag{2}
\end{equation*}
$$

When $x=5$ and $y=12$,

$$
z=\sqrt{5^{2}+12^{2}}=\sqrt{25+144}=\sqrt{169}=13 .
$$

Substituting $z=13, x=5, y=12, \frac{d z}{d t}=10$, and $\frac{d x}{d t}=2$ into (2) gives

$$
2(5)(2)+2(12) \frac{d y}{d t}=2(13)(10)
$$

Solving this equation for $\frac{d y}{d t}$ gives $\frac{d y}{d t}=10$. The point Q is moving in the positive y direction at a rate of 10 meters per second.
6) (a) $\lim _{x \rightarrow-\infty} x+\frac{4}{x}=-\infty$ since $\lim _{x \rightarrow-\infty} \frac{4}{x}=0$ so that the behaviour of $f(x)$ for x large is determined by the behaviour of x. Similarly $\lim _{x \rightarrow \infty} x+\frac{4}{x}=\infty$. On the other hand, when x is small the behaviour of $f(x)$ is determined by $\frac{4}{x}$ since this term grows arbitrarily large as x shrinks to 0 while the term x shrinks to 0 . Thus $\lim _{x \rightarrow 0^{-}} x+\frac{4}{x}=-\infty$ and $\lim _{x \rightarrow 0^{+}} x+\frac{4}{x}=\infty$.
(b) In order to determine on which intervals f is increasing or decreasing we need to determine the sign of f^{\prime}.

$$
f^{\prime}(x)=1-\frac{4}{x^{2}}
$$

Next we solve $f^{\prime}(x)=0$.

$$
\begin{aligned}
1-\frac{4}{x^{2}} & =0 \\
1 & =\frac{4}{x^{2}} \\
x^{2} & =4 \\
x & = \pm 2
\end{aligned}
$$

The number 0 is not in the domain of f and so we partition the real line into 4 intervals: $(-\infty,-2),(-2,0),(0,2)$, and $(2, \infty)$. On each of these intervals the sign of $f^{\prime}(x)$ is the same for each choice of x within a fixed interval. In order to determine the sign of f^{\prime} we choose the sample point -3 from the interval $(-\infty,-2),-1$ from the interval $(-2,0), 1$ from the interval $(0,2)$, and 3 from the interval $(2, \infty)$.

$$
f^{\prime}(\pm 3)=1-\frac{4}{(\pm 3)^{2}}=1-\frac{4}{9}=\frac{5}{9}>0 \quad f^{\prime}(\pm 1)=1-\frac{4}{(\pm 1)^{2}}=-3<0
$$

Therefore f is increasing on the intervals $(-\infty,-2)$ and $(2, \infty)$ and f is decreasing on the intervals $(-2,0)$ and $(0,2)$.
(c) In order to determine the intervals on which f is concave up and concave down we need to determine the sign of $f^{\prime \prime}$. From part (b), $f^{\prime}(x)=1-4 x^{-2}$ so that

$$
f^{\prime \prime}(x)=8 x^{-3}=\frac{8}{x^{3}} .
$$

The equation $f^{\prime \prime}(x)=0$ has no solutions and so we divide the real line into two intervals $(-\infty, 0)$ and $(0, \infty)$ (recall the value 0 is not in the domain of f). On the interval $(-\infty, 0)$ the sign of $f^{\prime \prime}$ stays the same and this is also true for the interval $(0, \infty)$. Choose sample point -1 from the interval $(-\infty, 0)$ and 1 from the interval $(0, \infty)$.

$$
f^{\prime \prime}(-1)=\frac{8}{(-1)^{3}}=-8<0 \quad f^{\prime \prime}(1)=\frac{8}{1^{3}}=8>0
$$

Thus f is concave down on the interval $(-\infty, 0)$ and concave up on the interval $(0, \infty)$.
(d) From part (b) we see that f has a local maxima at -2 since -2 is in the domain of f and f is increasing on $(-\infty,-2)$ and decreasing on $(-2,0)$. There is no local extrema at $x=0$ since 0 is not in the domain of f. There is a local minima at $x=2$ since f is decreasing on $(0,2)$ and increasing on $(2, \infty)$.
f has no global maxima since f tends to arbitrarily large numbers as x tends to 0 from the right. f has no global minima since f tends to arbitrarily large negative numbers as x tends to 0 from the left.
(e)

7) The revenue is the number of mugs sold multiplied by the price for which the mugs are sold. Let x be the amount we charge per mug. When we are charging x dollars per mug we are going to sell $100-10(x-20)$ mugs. If $R(x)$ is the revenue function then

$$
R(x)=(100-10(x-20)) x
$$

The factor $(100-10(x-20))$ represents the number of mugs sold when we are charging x dollars per mug and the factor of x represents the price for which each mug is sold. The goal is to optimize $R(x)$ for $x \geq 0$. We start by computing the derivative of $R(x)$. To compute $R^{\prime}(x)$ we can use the Product Rule or we can simplify $R(x)$ and then use the Power Rule. We opt for the latter.

$$
R(x)=(100-10(x-20)) x=(300-10 x) x=-10 x^{2}+300 x
$$

Thus $R^{\prime}(x)=-20 x+300$ and solving $R^{\prime}(x)=0$ gives $x=\frac{300}{20}=15$. Since $R(x)$ is a parabola with a negative leading coefficient, $R(15)$ is the absolute maximum of $R(x)$ and we should charge 15 dollars per mug in order to maximize revenue.
8) (a) The function $y=1-e^{x}$ is continuous at 0 so $\lim _{x \rightarrow 0} 1-e^{x}=1-e^{0}=1-1=0$. Similarly the function $y=\sin (3 x)$ is continuous at 0 so $\lim _{x \rightarrow 0} \sin (3 x)=\sin (3 \cdot 0)=\sin (0)=$

0 . The limit is an indeterminate form and so we apply l'Hospital's Rule.

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{1-e^{x}}{\sin (3 x)} & =\lim _{x \rightarrow 0} \frac{\frac{d}{d x}\left(1-e^{x}\right)}{\frac{d}{d x}(\sin (3 x))} \\
& =\lim _{x \rightarrow 0} \frac{-e^{x}}{3 \cos (3 x)} \\
& =\frac{-e^{0}}{3 \cos (3 \cdot 0)}=\frac{-1}{3 \cdot 1}=-\frac{1}{3} .
\end{aligned}
$$

(b) Both of the functions $y=\ln x$ and $y=\cos x$ are continuous at π and $\cos \pi \neq 0$ so that

$$
\lim _{x \rightarrow \pi} \frac{\ln x}{\cos x}=\frac{\ln \pi}{\cos \pi}=\frac{\ln \pi}{-1}=-\ln \pi
$$

