Math 20C. Lecture Examples.

Section 12.1. Vectors in the plane ${ }^{\dagger}$

Example $1 \quad$ Find the x - and y-components of the vector u of length 10 with angle of inclination $\frac{5}{6} \pi$.
Answer: Figure A1a • u = $\langle-5 \sqrt{3}, 5\rangle \bullet$ Figure A1b

Figure A1a

Figure A1b

Example 2 Find an angle of inclination of the vector $w=\langle 3,4\rangle$.
Answer: Figure A2. - $\theta=\tan ^{-1}\left(\frac{4}{3}\right)$

Figure A2

[^0]Example 3 Calculate (a) $v+w$ and (b) $w-v$ for $v=\langle 4,1\rangle$ and $w=\langle 1,3\rangle$. Then draw the four vectors.

Example $4 \quad$ Write $3\langle 4,-1\rangle-2\langle 10,-5\rangle$ in the form $\langle\mathbf{a}, \mathbf{b}\rangle$. Answer: $3\langle 4,-1\rangle-2\langle 10,-5\rangle=\langle-8,7\rangle$
Example $5 \quad$ Three vertices of the parallelogram PRSQ in Figure 1 are $\mathbf{P}=(3,4)$, $\mathbf{Q}=(7,8)$, and $\mathbf{R}=(12,2)$. What are the coordinates of S ?

FIGURE 1

Answer: $S=(16,6)$
Example 6 Give the unit vector e_{v} and the vector w of length 5 with the same direction as $\mathbf{v}=\langle-\mathbf{3}, \mathbf{2}\rangle$.
Answer: $\mathbf{e}_{\mathbf{v}}=\frac{\langle-3,2\rangle}{\sqrt{13}} \bullet \mathbf{w}=\frac{\langle-15,10\rangle}{\sqrt{13}}$
Example $7 \quad$ Express $3(4 \mathbf{i}-\mathbf{j})-2(10 \mathbf{i}-5 \mathbf{j})$ in the form $\mathbf{a i}+\mathbf{b j}$.
Answer: $3(4 \mathbf{i}-\mathbf{j})-2(10 \mathbf{i}-5 \mathbf{j})=-8 \mathbf{i}+7 \mathbf{j}$. (Example 4 is the same calculation with different notation.)

Example 8 One man is lifting a boulder with a rod while another is pulling it with a rope as in Figure 2. (a) Find the x - and y-components of the two force vectors, with the usual orientation of axes. (b) Find the resultant of the two forces and the approximate decimal values of its magnitude and angle of inclination

FIGURE 2
Answer: (a) [Force exerted by the man with the rod] $=\mathbf{F}=300\left\langle\cos \left(\frac{7}{18} \pi\right), \sin \left(\frac{7}{18} \pi\right)\right\rangle$ pounds. • [Force exerted by the man with the rope] $=\mathbf{G}=150\left\langle\cos \left(\frac{1}{9} \pi\right), \sin \left(\frac{1}{9} \pi\right)\right\rangle$ pounds.
(b) $[$ Resultant $]=\left\langle 300 \cos \left(\frac{7}{18} \pi\right)+150 \cos \left(\frac{1}{9} \pi\right), 300 \sin \left(\frac{7}{18} \pi\right)+150 \sin \left(\frac{1}{9} \pi\right)\right\rangle \doteq\langle 244,333\rangle$ pounds •
[Magnitude of the combined force $\doteq 413$ pounds • [Angle of inclination] $\doteq \tan ^{-1}\left(\frac{333}{244}\right) \doteq 0.94$ radians.

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: \ddagger
Section 12.1: Examples 1, 6, 7

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 12.1 of Calculus, Early Transcendentals by Rogawski.

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

