Math 20C. Lecture Examples.

Section 12.2. Vectors in three dimensions^{\dagger}

Answer: Figure A1. • The corners of its base, ordered counterclockwise, are (2, 2, 0), (2, 3, 0), (0, 3, 0), and (0, 2, 0). • The corners of its top are (2, 2, 2), (2, 3, 2), (0, 3, 2), and (0, 2, 2).

Figure A1

Example 2	What is the length of the diagonals of the box from Example 1?
	Answer: The length of each of its four diagonals is $\sqrt{1^2 + 2^2 + 2^2} = 3$
Example 3	Describe the set of points defined by the equation,
	$(\mathbf{x}-1)^2 + (\mathbf{y}-2)^2 + (\mathbf{z}-3)^2 = 16.$
	Answer: $(x-1)^2 + (y-2)^2 + (z-3)^2 = 16$ is the sphere of radius 4 with its center at $(1, 2, 3)$.
Example 4	Describe the set of points in xyz-space defined by the equation, $x^2 + y^2 = 25$.
	Answer: $x^2 + y^2 = 25$ is the cylinder of radius 5 with the <i>z</i> -axis as its axis.
Example 5	$ \begin{array}{l} \mbox{Write } z = u + 2v + 3w \mbox{ in the form } a i + b j + c k, \mbox{ where } u = 3 i - j, v = j - 3 k \\ \mbox{and } w = i + k. \end{array} $
	Answer: $\mathbf{z} = 6 \mathbf{i} + \mathbf{j} - 3 \mathbf{k}$
Example 6	Three adjacent vertices of a parallelogram PQRS in space are $P = (1, 3, 2)$, $Q = (4, 5, 3)$, and $R = (2, -1, 0)$. What are the coordinates of the point S opposite Q?
	Answer: Use the schematic sketch in Figure A6. • $S = (-1, -3, -1)$

Figure A6

[†]Lecture notes to accompany Section 12.2 of Calculus, Early Transcendentals by Rogawski.

Math 20C. Lecture Examples. (10/1/08)

- Example 7Give parametric equations for the line L through the point (6,4,3) and
parallel to the vector $2\mathbf{i} + 5\mathbf{j} 7\mathbf{k}$.

 Answer: L: x = 6 + 2t, y = 4 + 5t, z = 3 7tExample 8Give parametric equations for the line L through $\mathbf{P} = (5,3,1)$
and $\mathbf{Q} = (7, -2, \mathbf{0})$.

 Answer: L: x = 5 + 2t, y = 3 5t, z = 1 tExample 9Find the intersection of the lines \mathbf{L}_1 : $\mathbf{x} = 2 \mathbf{t}$, $\mathbf{y} = 3 + \mathbf{t}$, $\mathbf{z} = 4 2\mathbf{t}$ and
 \mathbf{L}_2 : $\mathbf{x} = -3 + \mathbf{t}$, $\mathbf{y} = -1 + 2\mathbf{t}$, $\mathbf{z} = 9 3\mathbf{t}$

 Answer: Intersection: (0, 5, 0)Example 10A bucket of water is supported by two ropes fastened at the same point on
the line fit is a supported by two ropes fastened at the same point on
the line fit is supported by two ropes fastened at the same point on
the line fit is supported by two ropes fastened at the same point on
the line fit is supported by two ropes fastened at the same point on
the line fit is supported by two ropes fastened at the same point on
the line fit is supported by two ropes fastened at the same point on
the line fit is supported by two ropes fastened at the same point on
the line fit is supported by the line here is supported by the line her
 - its handle. The forces by the ropes on the bucket, relative to xyz-space with an upward pointing z-axis, are $F_1 = \langle 3, a, 6 \rangle$ (pounds) and $F_2 = \langle b, -4, 5 \rangle$ (pounds). What are the numbers a and b? How much does the bucket weigh?

Answer: a = 4, b = -3 and the bucket weighs 11 pounds.

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:[‡]

Section 12.3: Examples 1, 2, and 6

Section 12.5: Examples 1 and 2 $\,$

 $[\]ddagger$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.