Math 20C. Lecture Examples.

Section 12.2. Vectors in three dimensions ${ }^{\dagger}$

Example $1 \quad$ Sketch the box consisting of all points $(\mathbf{x}, \mathbf{y}, \mathbf{z})$ with $\mathbf{0} \leq \mathbf{x} \leq \mathbf{2}, \mathbf{2} \leq \mathbf{y} \leq \mathbf{3}$, and $0 \leq z \leq 2$. What are the coordinates of the eight corners of the box?
Answer: Figure A1. - The corners of its base, ordered counterclockwise, are $(2,2,0),(2,3,0),(0,3,0)$, and $(0,2,0)$. - The corners of its top are $(2,2,2),(2,3,2),(0,3,2)$, and $(0,2,2)$.

Figure A1

Example $2 \quad$ What is the length of the diagonals of the box from Example 1?
Answer: The length of each of its four diagonals is $\sqrt{1^{2}+2^{2}+2^{2}}=3$
Example 3 Describe the set of points defined by the equation, $(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=16$.
Answer: $(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=16$ is the sphere of radius 4 with its center at $(1,2,3)$.
Example 4 Describe the set of points in xyz-space defined by the equation, $\mathrm{x}^{2}+\mathrm{y}^{2}=25$.
Answer: $x^{2}+y^{2}=25$ is the cylinder of radius 5 with the z-axis as its axis.
Example $5 \quad$ Write $z=\mathbf{u}+2 \mathbf{v}+3 w$ in the form $\mathbf{a i}+\mathbf{b} \mathbf{j}+\mathbf{c k}$, where $\mathbf{u}=\mathbf{3 i}-\mathbf{j}, \mathbf{v}=\mathbf{j}-\mathbf{3 k}$ and $\mathbf{w}=\mathbf{i}+\mathbf{k}$.
Answer: $\mathbf{z}=6 \mathbf{i}+\mathbf{j}-3 \mathbf{k}$
Example 6 Three adjacent vertices of a parallelogram PQRS in space are $\mathbf{P}=(1,3,2)$, $Q=(4,5,3)$, and $R=(2,-1,0)$. What are the coordinates of the point S opposite Q ?
Answer: Use the schematic sketch in Figure A6.

- $S=(-1,-3,-1)$

Figure A6

[^0]Example 7 Give parametric equations for the line L through the point $(6,4,3)$ and parallel to the vector $2 \mathrm{i}+\mathbf{5 j}-\mathbf{7 k}$.
Answer: $L: x=6+2 t, y=4+5 t, z=3-7 t$
Example $8 \quad$ Give parametric equations for the line \mathbf{L} through $\mathbf{P}=(5,3,1)$ and $\mathbf{Q}=(7,-2,0)$.
Answer: $L: x=5+2 t, y=3-5 t, z=1-t$
Example 9 Find the intersection of the lines $L_{1}: x=2-t, y=3+t, z=4-2 t$ and $\mathbf{L}_{2}: \mathbf{x}=-3+\mathbf{t}, \mathrm{y}=-1+2 \mathrm{t}, \mathrm{z}=\mathbf{9}-\mathbf{3} \mathbf{t}$
Answer: Intersection: ($0,5,0$)
Example 10 A bucket of water is supported by two ropes fastened at the same point on its handle. The forces by the ropes on the bucket, relative to xyz-space with an upward pointing z-axis, are $F_{1}=\langle 3, a, 6\rangle$ (pounds) and $F_{2}=\langle b,-4,5\rangle$ (pounds). What are the numbers a and b? How much does the bucket weigh?
Answer: $a=4, b=-3$ and the bucket weighs 11 pounds.

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/~ashenk/: \ddagger
Section 12.3: Examples 1, 2, and 6
Section 12.5: Examples 1 and 2

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 12.2 of Calculus, Early Transcendentals by Rogawski.

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

