Math 20C. Lecture Examples.

Section 12.3. The dot product and angles between vectors^{\dagger}

Answer:
$$\theta = \cos^{-1}\left(\frac{12}{\sqrt{17}\sqrt{20}}\right) \doteq 0.862$$
 radians

Answer: $k = \frac{2}{3}$ • The vectors are $\langle \frac{2}{3}, -2 \rangle$ and $\langle -3, -1 \rangle$. • Figure A4

Figure A4

(10/1/08)

[†]Lecture notes to accompany Section 12.3 of Calculus, Early Transcendentals by Rogawski.

 $\label{eq:example 5} {\rm \ Example 5} {\rm \ Find \ the \ component \ of \ u=\langle -6,3\rangle \ along \ v=\langle 2,2\rangle. \ Give \ the \ exact \ and \ approximate \ decimal \ values.}$

Answer: [Component of **u** along **v**] = $-\frac{3}{2}\sqrt{2} \doteq -2.12$ • Figure A5

 $\begin{array}{ll} \textbf{Example 6} & \textbf{What is the projection of } \mathbf{u} = \langle -1, 3, 4 \rangle \ \textbf{along } \mathbf{v} = \langle 3, 2, 1 \rangle \texttt{?} \\ \textbf{Answer:} \operatorname{proj}_{\mathbf{v}}(\mathbf{u}) = \langle \frac{3}{2}, 1, \frac{1}{2} \rangle \end{array}$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:[‡]

Section 12.3: Examples 1–5

Section 12.4: Examples 3-5

 $[\]ddagger$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.