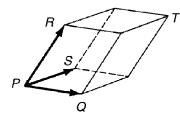
## Math 20C. Lecture Examples.

## Section 12.4. The cross product<sup> $\dagger$ </sup>

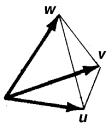
Evaluate the determinant,  $\begin{vmatrix} 3 & 2 & 4 \\ -1 & 0 & 6 \\ 5 & 1 & -2 \end{vmatrix}$ . Example 1 Answer: The given determinant equals 34. Find the cross product of  $\mathbf{v} = \langle \mathbf{3}, \mathbf{1}, -\mathbf{2} \rangle$  and  $\mathbf{w} = \langle \mathbf{0}, \mathbf{4}, \mathbf{2} \rangle$ . Example 2 Answer:  $\mathbf{v} \times \mathbf{w} = \langle 10, -6, 12 \rangle$ Example 3 As a partial check of the result of Example 2, show that each the given vectors is perpendicular to the calculated cross product. **Answer:** Let  $\mathbf{u} = \langle 10, -6, 12 \rangle$  be the calculated cross product. •  $\mathbf{v} \cdot \mathbf{u} = 0$  •  $\mathbf{w} \cdot \mathbf{u} = 0$ Example 4 Find a nonzero vector perpendicular to v = 4i - j + k and w = 2i - k. **Answer:** One answer: The cross product  $\mathbf{v} \times \mathbf{w} = \mathbf{i} + 6\mathbf{j} + 2\mathbf{k}$  is perpendicular to  $\mathbf{v}$  and  $\mathbf{w}$ . Find the area of the triangle with vertices P = (1, 2, 3), Q = (4, 2, 6) and Example 5 R = (5, 3, 7).

**Answer:** [Area of the triangle]  $=\frac{3}{2}\sqrt{2}$ 

Answer:  $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = -2$ 







Tetrahedron FIGURE 2

**Answer:** [Volume of the parallelepiped] = 2

Example 8 The vectors i, j, and k with their bases at the origin form three edges of a tetrahedron. What is its volume?

**Answer:** [Volume]  $=\frac{1}{6}$ 

## Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:<sup>‡</sup> Section 12.4: Examples 1–7

<sup>&</sup>lt;sup>†</sup>Lecture notes to accompany Section 12.4 of Calculus, Early Transcendentals by Rogawski.

 $<sup>\</sup>ddagger$  The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.