
Math 20C. Lecture Examples.

Sections 11.1 and 13.1. Parametric equations and vector-valued functions[†]

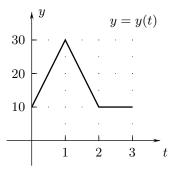
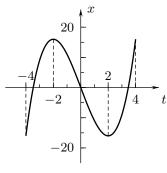


FIGURE 2

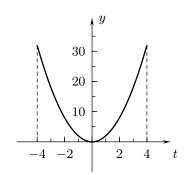
Answer: Use the values in the table below. • Figure A1

t	0	1	2	3
x = x(t)	10	10	30	10
y = y(t)	10	30	10	10


Figure A1

[†]Lecture notes to accompany Sections 11.1 and 13.1 of Calculus, Early Transcendentals by Rogawski.

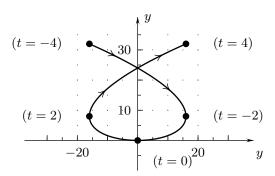
Example 2 Sketch the curve C: $x = t^3 - 12t, y = 2t^2, -4 \le t \le 4$.


Answer: Draw x=x(t) in a tx-plane and y=y(t) in a ty-plane for $-4 \le t \le 4$, using the table of values below. • Figures A2a and A2b). • Use these graphs to draw C: $x=t^3-12t, y=2t^2, -4 \le t \le 4$ in an xy-plane. • Figure A2c

t	-4	-2	0	2	4
$x = t^3 - 12t$	-16	16	0	-16	16
$y = 2t^2$	32	8	0	8	32

$$x(t) = t^3 - 12t$$
$$-4 \le t \le t$$

Figure A2a



$$y(t) = 2t^2$$
$$-4 \le t \le 4$$

Figure A2b

$$\begin{cases} x = t^3 - 12t \\ y = 2t^2 \\ -4 < t < 4 \end{cases}$$

Figure A2c

Example 3 Draw the line with parametric equations $x = 2 + t, y = 1 + \frac{1}{2}t$.

Answer: Figure A3

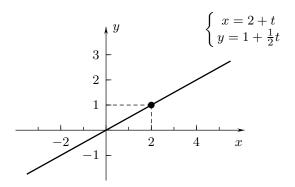


Figure A3

Example 4 Draw the ellipse C: $x=2\cos t, y=3\sin t, 0 \le t \le 2\pi$.

Answer: Figure A4

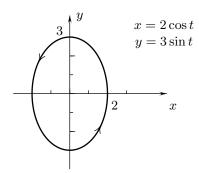
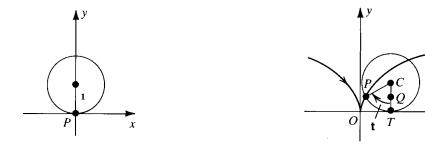



FIGURE 4

Figure A4

Example 5 When the circle of radius 1 in Figure 3 is rolled to the right along the x-axis, the point P that is initially at the origin generates the *cycloid* in Figure 4. Give parametric equations of this curve.

Answer: $x = t - \sin t$, $y = 1 - \cos t$

FIGURE 3

Example 6 What is the slope of the tangent line at t=3 on the curve $x=t^3-12t, y=2t^2$ in Figure 5?

FIGURE 5

Answer: [Slope of the tangent line at t = 3] = $\frac{4}{5}$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:[‡] Section 13.1: Examples 1–5

 $^{^{\}ddagger}$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.