Math 20C. Lecture Examples.

Sections 11.2, 13.2, and 13.3. Calculus of vector-valued functions ${ }^{\dagger}$

Example $1 \quad$ Find $\lim _{\mathbf{t} \rightarrow \mathbf{1}}\left\langle\mathbf{t}^{2}-3, \mathbf{e}^{\mathbf{3 t}}, \ln \mathbf{t}\right\rangle$.
Answer: $\lim _{t \rightarrow 1}\left\langle t^{2}-3, e^{3 t}, \ln t\right\rangle=\left\langle-2, e^{3}, 0\right\rangle$
Example $2 \quad$ What is $\lim _{\mathbf{t} \rightarrow \mathbf{3}} \mathbf{r}(\mathbf{t})$ if $\mathbf{r}(\mathbf{t})=\left\langle-\mathbf{t}, \mathbf{t}^{2}-\mathbf{5}\right\rangle$?
Answer: $\lim _{t \rightarrow 3} \mathbf{r}(t)=\langle-3,4\rangle$
Example $3 \quad$ Find the derivative, $\frac{\mathbf{d}}{\mathbf{d t}}\left\langle\mathbf{t}^{2}-3, \mathbf{e}^{3 \mathbf{t}}, \ln \mathbf{t}\right\rangle$.
Answer: $\frac{d}{d t}\left\langle t^{2}-3, e^{3 t}, \ln t\right\rangle=\left\langle 2 t, 3 e^{3 t}, \frac{1}{t}\right\rangle$
Example $4 \quad$ What is the derivative $r^{\prime}\left(\frac{1}{3} \pi\right)$ for $r(t)=2 \cos t i+4 \sin t j$?
Answer: $\mathbf{r}^{\prime}\left(\frac{1}{3} \pi\right)=-\sqrt{3} \mathbf{i}+2 \mathbf{j}$
Example $5 \quad$ Find the velocity vector to the ellipse $C:=5 \cos t, y=3 \sin t$ at $t=\frac{1}{4} \pi$. Then draw the ellipse and the velocity vector, using the scales on the axes to measure the components.
Answer: $\mathbf{v}\left(\frac{1}{4} \pi\right)=\left\langle-\frac{5}{2} \sqrt{2}, \frac{3}{2} \sqrt{2}\right\rangle \bullet$ Figures A5a and A5b

Figure A5a

Figure A5b

[^0]Example $6 \quad$ Figure 1 shows the curve C : $x=4 t-t^{3}, y=2-\sin (\pi t),-1 \leq t \leq 2.3$.
(a) Find its velocity vector at $t=1$ and draw it with the curve using the scales on the axes to measure the components. (b) What is the speed at $\mathrm{t}=1$?

FIGURE 1

Answer: (a) [Velocity at $t=1]=\langle 1, \pi\rangle \doteq\langle 1,3.14\rangle$ • Put the base of the velocity vector at $(x(1), y(1))=(3,2)$. - Figure A6 (b) $[$ Speed at $t=1]=\sqrt{1+\pi^{2}}$

Figure A6

Example 7 A robot moving in an xy-plane with distances measured in meters is at $(120,40)$ at $t=0$ (minutes) and its velocity vector is $v(t)=\langle-120 \sin (2 t), 80 \cos (2 t)\rangle$ (meters per minute) at time t. Find the robot's position vector $R=R(t)$ and describe the robot's path.
Answer: $\mathbf{R}(t)=\langle 60 \cos (2 t)+60,40 \sin (2 t)+40\rangle$ (meters) - The path is the ellipse in Figure A7 with center at $(60,40)$, horizontal axis of length 120 , and vertical axis of length 80 .

Figure A7

Example $8 \quad$ Find the length of the curve $\mathbf{x}=\mathbf{t}^{\mathbf{3}}, \mathbf{y}=\mathrm{t}^{\mathbf{2}},-1 \leq \mathbf{t} \leq 1$ in Figure 2.

$$
\left\{\begin{array}{c}
x=t^{3} \\
y=t^{2} \\
-1 \leq t \leq 1
\end{array}\right.
$$

FIGURE 2

Answer: $[$ Length $]=\frac{2}{27}\left(13^{3 / 2}-8\right)$

Example 9 Give a definite integral that equals the length of the curve, $C: x=2 \sin t, y=\ln t, 0.1 \leq t \leq 10$ in Figure 3.
$\left\{\begin{array}{c}x=2 \sin t \\ y=\ln t \\ 0.1 \leq t \leq 10\end{array}\right.$
FIGURE 3

Answer: [Length] $=\int_{0.1}^{10} \sqrt{4 \cos ^{2} t+t^{-2}} d t$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: \ddagger Section 13.2: Examples 1-5

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Sections 11.2, 13.2, and 13.3 of Calculus, Early Transcendentals by Rogawski.

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

