Math 20C. Lecture Examples.

Section 14.8. Lagrange multipliers ${ }^{\dagger}$

Imagine that the curve in Figure 1 is a mirror and that a viewer at point F_{2} is looking at the image in the mirror of an object at point F_{1}. According to Fermat's principle from physics, the image will be the point P_{0} on the mirror such that the total distance

$$
\begin{equation*}
f(P)=\overline{P F_{1}}+\overline{P F_{2}} \tag{1}
\end{equation*}
$$

that the light travels from the object to the viewer is a minimum a that point. For each number c that is greater than the distance $\overline{F_{1} F_{2}}$ between the object and the viewer, the level curve $\overline{P F_{1}}+\overline{P F_{2}}=c$ of the distance $f(P)$ is an ellipse. Figure 2 shows eight of these ellipses.
Example 1 Why can you expect the ellipse to be tangent to the mirror at the point P_{0} ?

FIGURE 1

FIGURE 2

Answer: The solution is the answer
To express the result of Example 1 with formulas, we introduce $x y$-axes, as in Figure 3, and let $f(x, y)$ be the sum (1) of the distances from $P=(x, y)$ to F_{1} and F_{2}. We also assume that the mirror C is a level curve $g(x, y)=c$ of another function with a nonzero gradient vector.

[^0]At $P_{0}=(a, b)$ where the smallest ellipse and C are tangent, $\nabla f(a, b)$ is perpendicular to the ellipse, which is the level curve of f, and $\nabla g(a, b)$ is perpendicular to C, which is the level curve of g (Figure 3). Since the curves are tangent at (a, b), the two gradient vectors are parallel, and there is a number λ such that $\nabla f(a, b)=\lambda \nabla g(a, b)$. The number λ is called a Lagrange multiplier.

FIGURE 3

Example 2 Use Lagrange multipliers to find the maximum and minimum values of $f(x, y)=x-2 y+1$ on the ellipse $x^{2}+3 y^{2}=21$ and where they occur.
Answer: The maximum of f on the ellipse is 8 at $(3,-2)$ and the minimum is -6 at $(-3,2)$.
Example $3 \quad$ Sketch the ellipse in Example 2 and the level curves of $z=f(x, y)$ where the maximum and minimum occur.
Answer: Figure A3

Figure A3

Example 4 Use Lagrange multipliers to find the rectangle of perimeter 12 that has the largest area (Figure 4).

FIGURE 4

Answer: The rectangle with perimeter 12 and maximum area is a square of width 3 and area 9. - (The level curves of the area $A=x y$ are the hyperbolas $x y=k$ and the constraint curve is the line $2 x+2 y=12$ in Figure A5.)

Figure A5

Example $5 \quad$ Use Lagrange multipliers to find the dimensions of the rectangle of area 9 that has the shortest perimeter.

Answer: The rectangle of area 9 and minimum perimeter is the square of width 3, and perimeter 12. • (The level curves of the perimeter $P=2 x+2 y$ are the lines $2 x+2 y=c$ and the constraint curve is the hyperbola $x y=9$ in Figure A6.

Figure A5

Example 6 Solve Example 2 by finding the minimum of a function of one variable.
Answer: The constraint condition $2 x+2 y=12$ implies that $y=6-x$, which in the formula $A=x y$ for the area gives $A(x)=x(6-x)=6 x-x^{2}$. $\bullet y=A(x)$ has a global maximum for $x=3$, where $y=6-x=3$.

Example 7 Figure 5 shows the curve $C: x^{2} y=8$ and level curves of the function $f(x, y)=\frac{1}{2} x^{2}+y$. Find the minimum value of f on C and where it occurs.

FIGURE 5

$$
\text { Answer: Set } g=x^{2} y . \bullet \nabla f=\lambda \nabla g \bullet \lambda= \pm \frac{1}{4} \bullet \quad[\text { Minimum }]=4 \text { at }(\pm 2,2) \bullet \quad \text { Figure A7 }
$$

Figure A7

Example 8 Figure 6 shows level curves of the yield of corn, measured in thousand of pounds per acre, that a farmer will obtain if he applies x acre-feet of irrigation water and y pounds of fertilizer per acre during the growing season. ${ }^{\dagger}$ Suppose that the water costs $\$ 60$ per acre-foot, the fertilizer costs 9 dollars per pound, and the farmer has $\$ 180$ to invest per acre for water and fertilizer. Approximately how much water and how much fertilizer should he buy to maximize the yield of corn?

FIGURE 6

Abstract

Answer: It would cost $C(x, y)=60 x+9 y$ dollars for x acre-feet of water and y-pounds of fertilizer. $x \geq 0, y \geq 0,60 x+9 y \leq 180$ and consequently (x, y) must be in the shaded triangle of Figure A8. - The farmer should use approximately 1.75 acre-feet of water and 8.3 pounds of fertilizer for each acre.

Figure A8

Example 9 Find the maximum and minimum values of $f(x, y, z)=6 x+3 y+2 z-5$ on the ellipsoid $4 \mathrm{x}^{2}+2 \mathrm{y}^{2}+\mathrm{z}^{2}=\mathbf{7 0}$.
Answer: Set $g=4 x^{2}+2 y^{2}+z^{2} . \bullet \nabla f=\lambda \nabla g \bullet \lambda= \pm \frac{1}{4} \bullet$ The maximum is 30 and the minimum is -40 .

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ ashenk/: \ddagger

> Section 15.3: Examples 1-3

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 14.8 of Calculus, Early Transcendentals by Rogawski.

[^1]: ${ }^{\dagger}$ An acre foot of water would cover an acre one-foot deep.
 \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

