Math 20C. Lecture Examples.

Section 14.1, Part 1. Functions of two variables ${ }^{\dagger}$

Example 1 (a) What is the domain of $f(x, y)=x^{2}+y^{2}$? (b) What are the values $\mathrm{f}(2,3)$ and $\mathrm{f}(-2,-3)$ of this function at $(2,3)$ and $(-2,-3)$? (c) What is its range?
Answer: (a) The domain of f is the entire $x y$-plane. (b) $f(2,3)=13 \bullet f(-2,-3)=13$. (c) The range of f is the closed infinite interval $[0, \infty)$.
Example 2 Determine the shape of the surface $z=x^{2}+y^{2}$ in xyz-space by studying its cross sections in the planes $x=c$ perpendicular to the x-axis.
Answer: The intersection of the surface $z=x^{2}+y^{2}$ with the plane $x=c$ is a parabola that opens upward and whose vertex is at the origin if $c=0$ and is c^{2} units above the $x y$-plane if $c \neq 0 \bullet$ Figure A2a \bullet The surface has the bowl-like shape in Figure A2b

Figure A2a

Figure A2b

[^0]Example 3 Determine the shape of the surface $z=x^{2}+y^{2}$ of Example 2 by studying its cross sections in the planes $y=c$ perpendicular to the y-axis.
Answer: The intersection of the surface $z=x^{2}+y^{2}$ with the plane $y=c$ is parabola that opens upward and whose vertex is at the origin if $c=0$ and is c^{2} units above the $x y$-plane if $c \neq 0$. • Figure A3a • The surface has the bowl-like shape from Example 2. (Figure A3b shows the cross sections from Examples 2 and 3 together.)

Figure A3a

Figure A3b

Example 4 Determine the shape of the surface $z=y^{2}-x^{2}$ by studying its cross sections in the planes $x=c$ perpendicular to the x-axis.
Answer: The intersection of the surface $z=y^{2}-x^{2}$ with the plane $x=c$ is a parabola that opens upward and whose vertex is c^{2} units below the $x z$-plane. - Figure A4a - The vertex is at the origin for $c=0$ and drops below the $x y$-plane as c moves away from zero. - The surface has the saddle shape in Figure A4b.

Figure A4a

Figure A4b

Example $5 \quad$ Determine the shape of the surface $z=y^{2}-x^{2}$ of Example 4 by studying its cross sections in the planes $y=c$ perpendicular to the y-axis.
Answer: The intersection of the surface $z=y^{2}-x^{2}$ with the plane $y=c$ is a parabola that opens downward and whose vertex is c^{2} units above the $x y$-plane. - Figure A5a - The vertex is at the origin for $c=0$ and rises above the $x y$-plane as c moves away from zero. - The surface has the saddle shape from Example 4. (Figure A5b shows the two sets of cross sections together.)

Figure A5a

Figure A5b

Example 6 Use the curve $z=y-\frac{1}{12} y^{3}$ in the yz-plane of Figure 1 to determine the shape of the surface $z=y-\frac{1}{12} y^{3}-\frac{1}{4} x^{2}$.

FIGURE 1

[^1]

Figure A6

Example $7 \quad$ Describe the level curves of the function $f(x, y)=x^{2}+y^{2}$ from Examples 2 and 3.

Answer: Figure A7a shows horizontal cross sections of the graph of f and Figure A7b shows the corresponding level curves. - The level curve $f=c$ is the circle of radius \sqrt{c} with its center at the origin if $c>0$, is the origin if $x=0$, and is empty if $c<0$. (The surface is called a "circular paraboloid.")

Figure A7a

Figure A7b

Example $8 \quad$ Describe the level curves of $g(x, y)=y^{2}-x^{2}$ from Examples 4 and 5.
Answer: Figures A8a and A8b - The level curves $g=c$ is a hyperbola with the equation $y^{2}-x^{2}=c$. (The surface is a "hyperbolic paraboloid.")

Figure A8a
Figure A8b

Example $9 \quad$ Figures 2 and 3 show horizontal cross sections of the graph of $h(x, y)=y-\frac{1}{12} y^{3}-\frac{1}{4} x^{2}$ from Example 6 and the corresponding level curves of the function. Describe how the surface can be reconstructed from the level curves.

FIGURE 2
FIGURE 3

[^2]
Rotating axes

You will see in Section 14.8 that the surfaces $z=k x y$ with nonzero constants k are important in the study of maxima and minima of functions with two variables. Their shapes can be determined by introducing new $x^{\prime} y^{\prime}$-coordinates by rotating the x - and y-axes 45° counterclockwise as in Figure $4 .{ }^{\dagger}$ The original coordinates (x, y) can be calculated from the new coordinates $\left(x^{\prime}, y^{\prime}\right)$ by the formulas,

$$
\begin{equation*}
\mathrm{x}=\frac{1}{\sqrt{2}}\left(\mathrm{x}^{\prime}-\mathrm{y}^{\prime}\right), \mathrm{y}=\frac{1}{\sqrt{2}}\left(\mathrm{x}^{\prime}+\mathrm{y}^{\prime}\right) \tag{1}
\end{equation*}
$$

FIGURE 4

Example 10 Use $x^{\prime} y^{\prime}$-coordinates as in Figure 4 to analyze the surface $z=-2 x y$.
Answer: The graph is the surface $z=\left(y^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}$, so it is the surface of Figure A4b rotated 45° as in Figure A10. (Notice that the x - and y-axes are on the surface.)

Figure A10

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/~ashenk/: \ddagger
Section 14.1: Examples 1-6

[^3]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 14.1, Part 1 of Calculus, Early Transcendentals by Rogawski.

[^1]: Answer: One solution: The cross section of the surface in the plane $x=c$ has the shape of the curve in Figure 1 if $c=0$, is that curve moved down and forward if $c>0$ and is that curve moved down and back if $c<0$.
 The surface has the boot-like shape in Figure A6
 Another solution: The cross section in the plane $y=c$ is a parabola that opens downward and has its vertex on the curve in Figure 1. - The surface has the boot-like shape in Figure A6.

[^2]: Answer: Leave the two parts of the level curve $h=0$ on the $x y$ plane. - Raise the two parts of the curve labeled $h=1$ one unit on the "toe" and "leg" of the "boot." Lower the curves above the upper part of $h=1$ to form the sides of the "boot." - Raise the curves below the lower part of $h=1$ to form the more of the "leg" of the "boot."

[^3]: ${ }^{\dagger}$ The primes on the variables x^{\prime} and y^{\prime} here are just to distinguish them from x and y. They do not denote derivatives.
 \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

