Math 20C. Lecture Examples.

Section 14.5. Directional derivatives and gradient vectors ${ }^{\dagger}$

Example 1 (a) Find the directional derivative of $f(x, y)=x^{2}+y^{2}$ at $(1,-1)$ in the direction of the unit vector $u=\left\langle\frac{1}{2} \sqrt{2},-\frac{1}{2} \sqrt{2}\right\rangle$ (Figure 1).
(b) Why is it plausible that the directional derivative is positive?

FIGURE 1

Answer: (a) $D_{\mathbf{u}} f(1,-1)=2 \sqrt{2}$ (b) $f(x, y)=x^{2}+y^{2}$ is increasing in the direction of \mathbf{u} at $(1,-1)$ in Figure 1 because its graph is a circular paraboloid that opens upward.
Example $2 \quad$ What is the derivative of $f(x, y)=x^{2} y^{5}$ at $P=(2,1)$ in the direction toward $\mathrm{Q}=(4,0)$?
Answer: $D_{\mathbf{u}} f(2,1)=-2 \sqrt{5}$
Example $3 \quad$ What is the derivative of $h(x, y)=e^{x y}$ at $(2,3)$ in the direction at an angle of $\frac{2}{3} \pi$ radians from the positive x-direction?
Answer: Figure A3 • $\mathbf{u}=\left\langle-\frac{1}{2}, \frac{1}{2} \sqrt{3}\right\rangle \bullet D_{\mathbf{u}} h(2,3)=\left(-\frac{3}{2}+\sqrt{3}\right) e^{6}$

Figure A3

[^0]Example 4 Figure 2 shows level curves of the temperature $\mathbf{T}=\mathbf{T}(\mathbf{x}, \mathrm{y})$ (degrees Celsius) of the surface of the ocean off the west coast of the United States at one time. ${ }^{(1)}$ Find the approximate rate of change of the temperature toward the northeast at point P in the drawing.

FIGURE 2

Answer: One answer: Figure A4 • $D_{\mathbf{u}} T(P) \approx-0.005$ degrees per mile

Figure A4

[^1]Example $5 \quad$ Draw $\nabla f(1,1), \nabla f(-1,2)$, and $\nabla f(-2,-1)$ for $f(x, y)=x^{2} y$. Use the scale on the x - and y-axes to measure the lengths of the arrows.

$$
\text { Answer: } \nabla f(1,1)=\langle 2,1\rangle \bullet \nabla f(-1,2)=\langle-4,1\rangle \bullet \nabla f(-2,-1)=\langle 4,4\rangle \bullet \text { Figure A5 }
$$

Figure A5

Example $6 \quad$ (a) What is the maximum directional derivative of $g(x, y)=y^{2} e^{2 x}$ at $(2,-1)$ and in the direction of what unit vector does it occur?
(b) What is the minimum directional derivative of g at $(2,-1)$ and in the direction of what unit vector does it occur?
Answer: (a) The maximum directional derivative is $\sqrt{8} e^{4}$ and occurs in the direction of $\mathbf{u}=\frac{\langle 1,-1\rangle}{\sqrt{2}}$.
(b) The minimum directional derivative is $=-\sqrt{8} e^{4}$ and occurs in the direction of $\mathbf{u}=\frac{\langle-1,1\rangle}{\sqrt{2}}$.

Example $7 \quad$ Give the two unit vectors u such that the function $z=g(x, y)$ of Example 6 has zero derivatives at $(2,-1)$ in the direction of u.
Answer: The directional derivative is zero in the directions of $\mathbf{u}=\frac{\langle-1,-1\rangle}{\sqrt{2}}$ and $\mathbf{u}=\frac{\langle 1,1\rangle}{\sqrt{2}}$.
Example 8
(a) Draw the gradient vector of $f(x, y)=x y$ at $(1,2)$ and the level curve of f through that point.
(b) Draw $\nabla f(-3,1)$ and the level curve of f through $(-3,1)$. Use the scales on the axes to measure the components.

Answer: (a) $\nabla f(1,2)=\langle 2,1\rangle \bullet$ The level curve is $y=\frac{2}{x}$ • Figure A8a
(b) $\nabla f(-3,1)=\langle 1,-3\rangle$ - The level curve is $y=\frac{-3}{x}$. - Figure A8b

Figure A8a

Figure A8b

Example 9 (a) What is the gradient of $f(x, y, z)=x y z$ at $(1,2,3)$?
(b) What is the directional derivative of f at $(1,2,3)$ in the direction toward $(2,3,4) ?$
(c) What is the greatest directional derivative of f at $(1,2,3)$?

Answer: (a) $\nabla f(1,2,3)=\langle 6,3,2\rangle$ (b) The directional derivative of f at $(1,2,3)$ in the direction toward $(2,3,4)$ is $\frac{11}{\sqrt{3}}$. (c) The greatest directional derivative of f at $(1,2,3)$ is 7 .
Example 10 Give an equation of the tangent plane at the point $(2,2,3)$ on the hyperboloid of two sheets $\mathrm{x}^{2}+\mathrm{y}^{2}-\mathrm{z}^{2}=-1$.
Answer: Tangent plane: $4(x-2)+4(y-2)-6(z-3)=0$ or $2 x+2 y-3 z=-1$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/ $\ddagger \ddagger$
Section 14.5: Examples 1 through 6
Section 14.7: Examples 4, 5, and 6

[^2]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 14.5 of Calculus, Early Transcendentals by Rogawski.

[^1]: ${ }^{(1)}$ Data adapted from Zoogeography of the Sea by S. Elkman, London: Sidgwich and Jackson, 1953, p. 144.

[^2]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

