Math 20C. Lecture Examples.

Section 14.7, Part 1. Maxima and minima: The first-derivative test ${ }^{\dagger}$

Example 1 The function $g(x, y)=2 x^{2}+y^{2}-2 x y-2 y$ has a global minimum. Find it. Answer: The global minimum is -2 .
Example 2 Find, without using calculus, the global maximum of $f(x, y, z)=\frac{1}{(x-y)^{2}+1}+e^{-z^{2}}$ and where it occurs.
Answer: The global maximum is 2 at the points $(x, x, 0)$ for all x.
Example 3 The function $M(x, y)=\frac{-5 y}{x^{2}+y^{2}+1}$, whose graph is shown in Figure 1, has a global maximum and a global minimum. What are they and where do they occur?

FIGURE 1

Answer: The global maximum is $\frac{5}{2}$ at $(0,-1)$ and the global minimum is $-\frac{5}{2}$ at $(0,1)$.
Example 3 Suppose that rectangular boxes with no tops (Figure 2) are to be manufactured so that each has a volume of 6 cubic feet. The boxes are to be made from material that costs 6 dollars per square foot for the bottoms, 2 dollars per square foot for the fronts and backs, and 1 dollar per square foot for the sides. What dimensions would minimize the cost of manufacturing each box?

FIGURE 2

Answer: The boxes should be manufactured to be 1 foot wide, 2 feet long, and 3 feet high.

[^0]Example $5 \quad$ The function $N(x, y)=\frac{1}{x}+\frac{1}{y}+x y$ has a minimum for $x>0, y>0$. What is it and where does it occur?
Answer: The minimum is 3 at $(1,1)$.
Example $6 \quad$ What are the values of x and y such that the sum of the squares of the distances from the point (x, y) to the four points $\left(\mathbf{a}_{1}, b_{1}\right),\left(\mathbf{a}_{2}, \mathbf{b}_{2}\right),\left(\mathbf{a}_{3}, \mathbf{b}_{3}\right)$, and $\left(\mathbf{a}_{4}, \mathbf{b}_{4}\right)$ is a minimum?
Answer: $x=\frac{1}{4}\left(a_{1}+a_{2}+a_{3}+a_{4}\right) \bullet y=\frac{1}{4}\left(b_{1}+b_{2}+b_{3}+b_{4}\right)$ (The averages)

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ ashenk/: \ddagger Section 15.1: Examples 1-6

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 14.7, Part 1 of Calculus, Early Transcendentals by Rogawski.

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

