Math 20C. Lecture Examples.

Section 14.7, Part 2. Maxima and minima: The Second-Derivative Test ${ }^{\dagger}$

The second-degree Taylor polynomial approximation of $y=f(x)$ at $x=a$ is

$$
T_{2}(x)=f(a)+f^{\prime}(a)(x-a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2} .
$$

This polynomial has the same value and first two derivatives as $y=f(x)$ at a and, consequently, is the second-degree polynomial that best approximates $y=f(x)$ near a.

If a is a critical point of $y=f(x)$, then $f^{\prime}(a)=0$ and the Taylor polynomial is

$$
T_{2}(x)=f(a)+\frac{1}{2} f^{\prime \prime}(a)(x-a)^{2}
$$

If $f^{\prime \prime}(a)$ is positive, then the graph of T_{2} is a parabola that opens upward, as in Figure 1 , and f has a local minimum at a. If $f^{\prime \prime}(a)$ is negative, then the graph of T_{2} is a parabola that opens downward, as in Figure 4 , and f has a local maximum at a.

To study local maxima and minima in the case of two variables, we approximate functions $z=f(x, y)$ by second-degree Taylor polynomials.

Definition 1 The second-degree Taylor approximation of $z=f(x, y)$ at (a, b) is

$$
\begin{equation*}
T_{2}(x, y)=D+E(x-a)+F(y-b)+\frac{1}{2} A(x-a)^{2}+B(x-a)(y-b)+\frac{1}{2} C(y-b)^{2} \tag{1}
\end{equation*}
$$

where $D=f(a, b)$ is the value of f, and $E=f_{x}(a, b), F=f_{y}(a, b), A=f_{x x}(a, b)$, $B=f_{x y}(a, b)$, and $C=f_{y y}(a, b)$ are its first- and second-order derivatives at (a, b).

The Taylor polynomial (1) has the same value and the same first and second derivatives as f at (a, b) and is the second-degree polynomial that best approximates f near that point.

[^0]Example 1 Give the second-degree Taylor polynomial approximation of $\mathbf{f}(\mathbf{x}, \mathbf{y})=\mathbf{1}-\cos \mathbf{x} \cos \mathbf{y}$ at $\mathbf{x}=\mathbf{0}, \mathbf{y}=\mathbf{0}$.
Answer: $T_{2}(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}$
The graph of $f(x, y)=1-\cos x \cos y$ from Example 1 is in Figure 3. The graph of its Taylor polynomial approximation is the circular paraboloid $z=T_{2}(x, y)$ shown in Figure 4. The function f has a local minimum at $x=0, y=0$ because the Taylor polynomial has a global minimum there.

FIGURE 3
FIGURE 4

This approach can be applied to any function. Suppose that (a, b) is a critical point of f. Then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ and the Taylor polynomial approximation of f at $(a, b)(1)$ is

$$
\begin{equation*}
T_{2}(x, y)=D+\frac{1}{2} A(x-a)^{2}+B(x-a)(y-b)+\frac{1}{2} C(y-b)^{2} \tag{2}
\end{equation*}
$$

If the graph of T_{2} is an elliptic paraboloid that opens upward as in Figure 5 , then f has a local minimum at $x=a, y=b$; if the graph of T_{2} is an elliptic paraboloid that opens downward as in Figure 6 , then f has a local maximum at $x=a, y=b$; and if the graph of T_{2} is a hyperbolic paraboloid as in Figure 7, then f has a SADDLE POINT, which is neither a local maximum nor local minimum, at $x=a, y=b$. These geometric ideas are the basis of the Second-Derivative Test with two variables.

Local minimum
FIGURE 5

Local maximum
FIGURE 6

Saddle point FIGURE 7

Example $2 \quad$ Figures 8 and 9 show the graph of $f=-x^{4}-y^{4}-4 x y+\frac{1}{16}$ and its level curves. Use the Second-Derivative Test to classify its critical points.

FIGURE 8

FIGURE 9

Answer: f has a saddle point at $(0,0)$ and local maxima at $(1,-1)$ and at $(-1,1)$.
Example $3 \quad$ Figures 10 and 11 show the graph of $f=-2 x^{3}-3 y^{4}+6 x y^{2}$ and its level curves. Use the Second-Derivative Test to classify its critical points.

FIGURE 10

FIGURE 11

Answer: The function has local maxima at $(1,1)$ and $(1,-1)$. - The Second-Derivative Test fails at $(0,0)$.

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/~ashenk/: \ddagger
Section 15.2: Examples 1-3

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 14.7, Part 2 of Calculus, Early Transcendentals by Rogawski.

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

