
Math 20C (Shenk). Workshop Problems.

1. Which of the angles in the triangle with vertices P = (1,−2, 0), Q = (2, 1,−2), and R = (6,−1,−3) is a
right angle?

Answer: The right angle is at Q = (2, 1,−2).

2. Give parametric equations of the line through the point P = (0, 4, 10) and perpendicular to the plane
4x − 5y + 6z = 2.

Answer: L: x = 4t, y = 4 − 5t, z = 10 + 6t

3. Give an equation for the plane through the origin and parallel to the plane 3x − y + z = 1000.

Answer: 3x − y + z = 0

4. An airplane is at x = 300t, y = −400t, z = 3 (miles) at time t (hours) in xyz-space with the positive z-axis
pointing up and the origin on the ground. Find its constant vector velocity and constant speed.

Answer: [Velocity] = v(t) = 〈300,−400, 0〉 miles per hour • [Speed] = 500 miles per hour

5 Figure 1 shows an object’s path and the tangent and normal lines to the path at a point P where the
radius of curvature is 8 feet. When the object is at P , it is moving

√
40 feet per second and is speeding

up eight feet per second2. Draw its approximate acceleration vector at that point, using the scales on the
axes to measure the components.
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Answer: a = 8T + 5N

6. Flnd the approximate maximum and minimum values of Wy(x, y) for 0 ≤ x ≤ 5, 1 ≤ y ≤ 4, where
z = W (x, y) is the the function whose level curves are in Figure 2.

Answer: [Maximum Wy ] ≈ 8 • [Minimum Wy ] ≈ 3

7. (a) Draw and label the level curves of g(x, y) = 1

2
x2+ 1

2
y2 through the points (1, 1), (1,−2), and (−3,−1).

(b) draw ∇g at those points, using the scales on the axes to measure its components.

Answer: Level curves: 1
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(b) ∇g(1, 1) = 〈1, 1〉 • ∇g(1,−2) = 〈1,−2〉 • ∇g(−3,−1) = 〈−3,−1〉

8. Find the gradient of f(x, y) = ln(xy) at (5, 10).

Answer: ∇f (5, 10) = 〈 1

5
, 1

10
〉

9. Give an equation of the tangent plane to z = 1

2
ln(x2 + y2) at x = 3, y = 4.

Answer: Tangent plane: z = ln(5) + 3
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10. Find the critical points of f = 16x − x2 + 8 ln y − y and use the Second Derivative Test to classify them.

Answer: Saddle point at (8, 8)

11. Figure 3 shows level curves of a function z = f(x, y) and one level curve of a function z = g1(x, y). Figure
4 shows the same level curves of f and one level curve of another function z = g2(x, y). How do theses
drawing relate to the method of Lagrange multipliers?
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12. Evaluate

∫ ∫
R

3x2y2 dx dy whereis R bounded by y = x, y = 2x, and x = 1

Answer:

∫ ∫
R

3x2y2 dx dy = 7

6

13. What the average value of g(x, y) = sin x sin y in the square R: 0 ≤ x ≤ π, 0 ≤ y ≤ π?

Answer: [Average value] =
4

π2

14. Evaluate

∫ ∫
R

(x2 + y2)−2 dx dy with R = {(x, y) : 4 ≤ x2 + y2 ≤ 9} by using polar coordinates.

Answer:

∫ ∫
R

(x2 + y2)−2 dx dy = 5

36
π

15. What is the value of

∫ ∫ ∫
V

3z2 dx dy dz if V is bounded by z = 0, z = x2, x = 0, y = 0, and y = 1 − x?

Answer:

∫ ∫ ∫
V

3z2 dx dy dz == 1

7
− 1

8
= 1

56


