Math 20C (Shenk). Workshop Problems.

1. Which of the angles in the triangle with vertices P = (1, -2, 0), Q = (2, 1, -2), and R = (6, -1, -3) is a right angle?

Answer: The right angle is at Q = (2, 1, -2).

2. Give parametric equations of the line through the point P = (0, 4, 10) and perpendicular to the plane 4x - 5y + 6z = 2.

Answer: L: x = 4t, y = 4 - 5t, z = 10 + 6t

3. Give an equation for the plane through the origin and parallel to the plane 3x - y + z = 1000.

Answer: 3x - y + z = 0

4. An airplane is at x = 300t, y = -400t, z = 3 (miles) at time t (hours) in xyz-space with the positive z-axis pointing up and the origin on the ground. Find its constant vector velocity and constant speed.

Answer: [Velocity] = $\mathbf{v}(t) = \langle 300, -400, 0 \rangle$ miles per hour • [Speed] = 500 miles per hour

5 Figure 1 shows an object's path and the tangent and normal lines to the path at a point P where the radius of curvature is 8 feet. When the object is at P, it is moving $\sqrt{40}$ feet per second and is speeding up eight feet per second². Draw its approximate acceleration vector at that point, using the scales on the axes to measure the components.

Answer: a = 8T + 5N

6. Find the approximate maximum and minimum values of $W_y(x,y)$ for $0 \le x \le 5, 1 \le y \le 4$, where z = W(x,y) is the function whose level curves are in Figure 2.

Answer: [Maximum W_y] $\approx 8 \bullet$ [Minimum W_y] ≈ 3

- (a) Draw and label the level curves of g(x, y) = ¹/₂x² + ¹/₂y² through the points (1, 1), (1, -2), and (-3, -1).
 (b) draw ∇g at those points, using the scales on the axes to measure its components.
 - Answer: Level curves: $\frac{1}{2}x^2 + \frac{1}{2}y^2 = 1, \frac{1}{2}x^2 + \frac{1}{2}y^2 = \frac{5}{2}, \frac{1}{2}x^2 + \frac{1}{2}y^2 = 5$ (b) $\nabla g(1,1) = \langle 1,1 \rangle \bullet \nabla g(1,-2) = \langle 1,-2 \rangle \bullet \nabla g(-3,-1) = \langle -3,-1 \rangle$
- 8. Find the gradient of $f(x, y) = \ln(xy)$ at (5, 10). Answer: $\nabla f(5, 10) = \langle \frac{1}{5}, \frac{1}{10} \rangle$

9. Give an equation of the tangent plane to $z = \frac{1}{2} \ln(x^2 + y^2)$ at x = 3, y = 4. Answer: Tangent plane: $z = \ln(5) + \frac{3}{25}(x-3) + \frac{4}{25}(y-4)$

- 10. Find the critical points of $f = 16x x^2 + 8 \ln y y$ and use the Second Derivative Test to classify them. Answer: Saddle point at (8,8)
- 11. Figure 3 shows level curves of a function z = f(x, y) and one level curve of a function $z = g_1(x, y)$. Figure 4 shows the same level curves of f and one level curve of another function $z = g_2(x, y)$. How do theses drawing relate to the method of Lagrange multipliers?

FIGURE 3

FIGURE 4

12. Evaluate
$$\iint_R 3x^2y^2 dx dy$$
 whereis R bounded by $y = x, y = 2x$, and $x = 1$
Answer: $\iint_R 3x^2y^2 dx dy = \frac{7}{6}$

- 13. What the average value of $g(x, y) = \sin x \sin y$ in the square $R: 0 \le x \le \pi, 0 \le y \le \pi$? **Answer:** [Average value] = $\frac{4}{\pi^2}$
- 14. Evaluate $\iint_R (x^2 + y^2)^{-2} dx dy$ with $R = \{(x, y) : 4 \le x^2 + y^2 \le 9\}$ by using polar coordinates. Answer: $\iint_R (x^2 + y^2)^{-2} dx dy = \frac{5}{36}\pi$ 15. What is the value of $\iiint_V 3z^2 dx dy dz$ if V is bounded by $z = 0, z = x^2, x = 0, y = 0$, and y = 1 - x? Answer: $\iiint_V 3z^2 dx dy dz = \frac{1}{7} - \frac{1}{8} = \frac{1}{56}$