Math 20C (Shenk). Workshop Problems.

1. Which of the angles in the triangle with vertices $P=(1,-2,0), Q=(2,1,-2)$, and $R=(6,-1,-3)$ is a right angle?

Answer: The right angle is at $Q=(2,1,-2)$.
2. Give parametric equations of the line through the point $P=(0,4,10)$ and perpendicular to the plane $4 x-5 y+6 z=2$.

Answer: $L: x=4 t, y=4-5 t, z=10+6 t$
3. Give an equation for the plane through the origin and parallel to the plane $3 x-y+z=1000$.

Answer: $3 x-y+z=0$
4. An airplane is at $x=300 t, y=-400 t, z=3$ (miles) at time t (hours) in $x y z$-space with the positive z-axis pointing up and the origin on the ground. Find its constant vector velocity and constant speed.

$$
\text { Answer: }[\text { Velocity }]=\mathbf{v}(t)=\langle 300,-400,0\rangle \text { miles per hour } \bullet[\text { Speed }]=500 \text { miles per hour }
$$

Figure 1 shows an object's path and the tangent and normal lines to the path at a point P where the radius of curvature is 8 feet. When the object is at P, it is moving $\sqrt{40}$ feet per second and is speeding up eight feet per second ${ }^{2}$. Draw its approximate acceleration vector at that point, using the scales on the axes to measure the components.

FIGURE 1

FIGURE 2

Answer: $\mathbf{a}=8 \mathbf{T}+5 \mathbf{N}$
6. Flnd the approximate maximum and minimum values of $W_{y}(x, y)$ for $0 \leq x \leq 5,1 \leq y \leq 4$, where $z=W(x, y)$ is the the function whose level curves are in Figure 2.

Answer: $\left[\right.$ Maximum $\left.W_{y}\right] \approx 8 \bullet\left[\operatorname{Minimum} W_{y}\right] \approx 3$
7. (a) Draw and label the level curves of $g(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}$ through the points $(1,1),(1,-2)$, and $(-3,-1)$. (b) draw ∇g at those points, using the scales on the axes to measure its components.

Answer: Level curves: $\frac{1}{2} x^{2}+\frac{1}{2} y^{2}=1, \frac{1}{2} x^{2}+\frac{1}{2} y^{2}=\frac{5}{2}, \frac{1}{2} x^{2}+\frac{1}{2} y^{2}=5$
(b) $\nabla g(1,1)=\langle 1,1\rangle \bullet \nabla g(1,-2)=\langle 1,-2\rangle \bullet \nabla g(-3,-1)=\langle-3,-1\rangle$
8. Find the gradient of $f(x, y)=\ln (x y)$ at $(5,10)$.

Answer: $\nabla f(5,10)=\left\langle\frac{1}{5}, \frac{1}{10}\right\rangle$
9. Give an equation of the tangent plane to $z=\frac{1}{2} \ln \left(x^{2}+y^{2}\right)$ at $x=3, y=4$.

Answer: Tangent plane: $z=\ln (5)+\frac{3}{25}(x-3)+\frac{4}{25}(y-4)$
10. Find the critical points of $f=16 x-x^{2}+8 \ln y-y$ and use the Second Derivative Test to classify them. Answer: Saddle point at $(8,8)$
11. Figure 3 shows level curves of a function $z=f(x, y)$ and one level curve of a function $z=g_{1}(x, y)$. Figure 4 shows the same level curves of f and one level curve of another function $z=g_{2}(x, y)$. How do theses drawing relate to the method of Lagrange multipliers?

FIGURE 3

FIGURE 4

12. Evaluate $\iint_{R} 3 x^{2} y^{2} d x d y$ whereis R bounded by $y=x, y=2 x$, and $x=1$ Answer: $\iint_{R} 3 x^{2} y^{2} d x d y=\frac{7}{6}$
13. What the average value of $g(x, y)=\sin x \sin y$ in the square $R: 0 \leq x \leq \pi, 0 \leq y \leq \pi$?

Answer: $[$ Average value $]=\frac{4}{\pi^{2}}$
14. Evaluate $\iint_{R}\left(x^{2}+y^{2}\right)^{-2} d x d y$ with $R=\left\{(x, y): 4 \leq x^{2}+y^{2} \leq 9\right\}$ by using polar coordinates.

$$
\text { Answer: } \iint_{R}\left(x^{2}+y^{2}\right)^{-2} d x d y=\frac{5}{36} \pi
$$

15. What is the value of $\iiint_{V} 3 z^{2} d x d y d z$ if V is bounded by $z=0, z=x^{2}, x=0, y=0$, and $y=1-x$?

Answer: $\iiint_{V} 3 z^{2} d x d y d z==\frac{1}{7}-\frac{1}{8}=\frac{1}{56}$

