Math 20C (Shenk). Summer, 2011. Exam 2.

(10 points per problem. Maximum $=100$ points)
Name \qquad Section \qquad
Work alone and use no books, notes, or calculators. Show your work with your answers on 8.5 " $\times 11$ " paper and staple the pages to the exam when you turn them in.
Problem 1 An object is traveling clockwise around the circle $x^{2}+y^{2}=25$ in an $x y$-plane with distances measured in feet. When it is at $(4,3)$, it is traveling 10 feet per second and is slowing down 5 feet per second ${ }^{2}$.
(a) (5 points) What is its velocity vector at that point?
(b) (5 points) What is its acceleration vector at that point?

Problem 2 Does Figure 2 show the graph of (a) $f(x, y)=e^{-y} \sin x$, (b) $f(x, y)=e^{-x} \sin y$, (c) $f(x, y)=e^{-x} e^{y}$, or (d) $f(x, y)=\sin x \sin y$? Justify your answer.

Problem 3 The table below gives the equivalent human age $A=A(t, w)$ of a dog that is t years old and weighs w pounds. (a) What does $A(10,60)$ represent? (b) What does $A_{w}(10,60)$ represent and, based on the table, what is its approximate value?

$A(t, w)=$ EQUIVALENT HUMAN AGE						
	$t=6$	$t=8$	$t=10$	$t=12$	$t=14$	$t=16$
$w=80$	45	55	66	77	88	99
$w=50$	42	51	60	69	78	87
$w=20$	40	48	56	64	72	80

(Over)

Scores: 1	2	3	4	5	6	7	8	9	10	Total

Problem 4 Draw the level curve of $g(x, y)=x y$ through the point $(2,1)$ and ∇g at that point.
Problem 5 Find the derivative $\frac{\partial^{2}}{\partial x \partial y}\left[e^{2 x+3 y}\right]$.
Problem 6 What is the directional derivative of $f(x, y)=\sin x+\cos y$ at $(1,1)$ in the direction toward the origin?
Problem 7 Find the two unit vectors that are perpendicular (normal) to the surface $x^{2}+y^{3}+z^{4}=3$ at the point $(1,1,1)$.

Problem 8 A rectangular box with no top (Figure 2) is to be manufactured so that it has a volume of one-half cubic foot. What dimensions should it have to minimize the total area of the bottom and four sides? (You may assume that the minimum exists.)

FIGURE 2

Problem 9 Find the critical points of $f=x^{4}-4 x+x y-y$ and use the Second-Derivative Test to clasify them.
Problem 10 (a) (7 points) Use Lagrange multipliers to find the minimum value of $f(x, y)=x^{2}+2 y^{2}$ on the line $2 x+y=9$. (b) (3 points) Why does f not have a maximum value on the line?

