Math 20C (Shenk). Summer, 2011. Exam 2. (10 points per problem. Maximum = 100 points)

Name _

_ Section _____

Work alone and use no books, notes, or calculators. Show your work with your answers on 8.5"×11" paper and staple the pages to the exam when you turn them in.

Problem 1 An object is traveling clockwise around the circle $x^2 + y^2 = 25$ in an *xy*-plane with distances measured in feet. When it is at (4,3), it is traveling 10 feet per second and is slowing down 5 feet per second².

(a) (5 points) What is its velocity vector at that point?

(b) (5 points) What is its acceleration vector at that point?

Problem 2 Does Figure 2 show the graph of (a) $f(x,y) = e^{-y} \sin x$, (b) $f(x,y) = e^{-x} \sin y$, (c) $f(x,y) = e^{-x}e^{y}$, or (d) $f(x,y) = \sin x \sin y$? Justify your answer.

FIGURE 1

Problem 3 The table below gives the equivalent human age A = A(t, w) of a dog that is t years old and weighs w pounds. (a) What does A(10, 60) represent? (b) What does $A_w(10, 60)$ represent and, based on the table, what is its approximate value?

A(t, w) = EQUIVALENT HUMAN AGE

	t = 6	t = 8	t = 10	t = 12	t = 14	t = 16
w = 80	45	55	66	77	88	99
w = 50	42	51	60	69	78	87
w = 20	40	48	56	64	72	80

Problem 4 Draw the level curve of g(x, y) = xy through the point (2, 1) and ∇g at that point.

Problem 5 Find the derivative $\frac{\partial^2}{\partial x \partial y} [e^{2x+3y}]$.

Problem 6 What is the directional derivative of $f(x, y) = \sin x + \cos y$ at (1, 1) in the direction toward the origin?

Problem 7 Find the two unit vectors that are perpendicular (normal) to the surface $x^2 + y^3 + z^4 = 3$ at the point (1,1,1).

Problem 8 A rectangular box with no top (Figure 2) is to be manufactured so that it has a volume of one-half cubic foot. What dimensions should it have to minimize the total area of the bottom and four sides? (You may assume that the minimum exists.)

FIGURE 2

Problem 9 Find the critical points of $f = x^4 - 4x + xy - y$ and use the Second-Derivative Test to clasify them. **Problem 10 (a)** (7 points) Use Lagrange multipliers to find the minimum value of $f(x, y) = x^2 + 2y^2$ on the line 2x + y = 9. (b) (3 points) Why does f not have a maximum value on the line?