Math 20C (Shenk). Summer, 2010. Homework 1.
Section 12.1: 5, 9, 29, 39, 58, 59
Section 12.2: 5, 9, 19, 25, 27, 31, 39
Section 12.3: 1, 13, 19, 23, 41, 61, 71
Section 12.4: 5, 11, 13, 31, 34, 41, 43, 47
Section 12.5: 1, 11, 13, 15, 21, 23, 44
Section 11.1: 13, 20
Section 13.2: 3, 7, 13, 45, 55
Section 13.3: 1, 3

## More problems to be turned in:

1. Three vertices of the parallelogram in the drawing below are $P=(3,4), Q=(7,8)$, and $R=(12,2)$. Find the coordinates of the fourth vertex $S$ without using vectors. Then find them by using vectors.


Answer: $S=(16,6)$
2. A bucket of water is supported by two ropes fastened at the same point on the handle. The forces by the ropes on the bucket, relative to $x y z$-space with an upward pointing $z$-axis, are $\mathbf{F}_{\mathbf{1}}=\langle 3, a, 6\rangle$ (pounds) and $\mathbf{F}_{\mathbf{2}}=\langle b,-4,5\rangle$ (pounds). What are the numbers $a$ and $b$ ? How much does the bucket weigh?

Answer: $a=4, b=-3$ and the bucket weighs 11 pounds.
3. A robot moving in an $x y$-plane with distances measured in meters is at $(120,40)$ at $t=0$ (minutes) and its velocity vector is $\mathbf{v}(t)=\langle-120 \sin (2 t), 80 \cos (2 t)\rangle$ (meters per minute) at time $t$. Find the robot's position vector $\mathbf{R}=\mathbf{R}(t)$ and describe its path.

Answer: $\mathbf{R}(t)=\langle 60 \cos (2 t)+60,40 \sin (2 t)+40\rangle$ (meters) - The path is the ellipse in Figure A3 with center at $(60,40)$, horizontal axis of length 120 , and vertical axis of length 80 .

Figure A3

4. Figure 3 shows the curve $C: x=x(t), y=y(t), 0 \leq t \leq 5.5$, where $x=x(t)$ and $y=y(t)$ are the curves in Figures 1 and 2. Find the approximate velocity vector on $C$ at $t=3$ and draw it with the curve.

$x=x(t)$
FIGURE 1

$y=y(t)$
FIGURE 2

$C: x=x(t), y=y(t)$
FIGURE 3

Answer: Figures A4a and A4b • v $(3) \approx\langle 1.5,-3\rangle \bullet$ Figure A4c


Figure A4a


Figure A4b


Figure A4c
5. An object is at $x=x(t), y=y(t)$ at time $t$ for $0 \leq t \leq 3$, where $x=x(t)$ and $y=y(t)$ are the piecewise-linear functions whose graphs are given in Figures 4 and 5. (a) Find the velocity vectors at $t=0.25, t=1.25$, and $t=2.25$. (b) Draw the object's path in an $x y$-plane with the velocity vectors from part (a). Use equal scales on the axes and the scale in Figure 6 to measure the components of the vectors.


FIGURE 4


FIGURE 5

$\begin{array}{llll}0 & 5 & 10 & 15\end{array}$
(meters per minute)

FIGURE 6

Answer: (a) $\mathbf{v}(0.25)=\langle 8,8\rangle$ meters per minute $\bullet \mathbf{v}(1.25)=\langle 4,-4\rangle$ meters per minute $\bullet \mathbf{v}(2.25)=\langle-3,-3\rangle$ meters per minute - Figure A5

Figure A5

6. The curve $C$ : $x=t^{2}-2, y=5 t-t^{3},-2.6 \leq t \leq 2,6$ is shown in Figure 7. Find its velocity vector at $t=-1$ and draw it with the curve.

## FIGURE 7



