Math 20C (Shenk). Summer, 2010. Homework 3.

Section $14.2(1,19)$, Section 14.3 ($9,11,19,21,35,47,51 \mathrm{a}, 59)$, Section $14.4(11,17,31)$, Section 14.5 ($5,23,31,41$), Section $14.7(5,7,9)$

1. Give equations of (a) the plane that has slope 3 in the positive x-direction and slope -5 in the positive y-direction, and whose z-intercept is 10 and (b) the plane that has slope -4 in the positive x-direction and slope 10 in the positive y-direction and contains the point $(5,6,7)$.

Answer: (a) $z=3 x-5 y+10$ (b) $z=7-4(x-5)+10(y-6)$
2. Find the linear function $z=L(x, y)$ with the level curves in Figure 1.

FIGURE 1

Answer: $L(x, y)=-20+10 x+10 y$

3. Values of a function $z=P(x, y)$ are given in the next table. Is it possible that P is linear? If so, give a formula for such a function.

	$x=0$	$x=10$	$x=20$
$y=4$	-12	-16	-20
$y=0$	0	-5	-8

Answer: The function cannot be linear.
4. The density of a saline solution of volume V (liters) containing w (grams) of salt is $\rho(V, w)=\frac{w}{V}$ grams per liter. (a) Give an equation of the tangent plane to $\rho=\rho(V, w)$ at $V=10, w=50$. (b) The volume is measured to be 10 liters with an error ≤ 0.01 liters and the mass of the salt is measured to be 50 grams with an error ≤ 0.06 grams. Use the tangent plane from part (a) to estimate the maximum possible error in the calculated volume.

$$
\begin{aligned}
& \text { Answer: (a) } \rho=5-\frac{1}{2}(V-10)+\frac{1}{10}(w-50) \quad \text { (b) }[\text { Maximum error }] \approx \frac{1}{2}(0.01)+\frac{1}{10}(0.06) \\
& =0.11 \text { grams per liter }
\end{aligned}
$$

5. What is the maximum directional derivative of $z=x^{5}+y^{3}$ at $(1,2)$? Give the unit vector in the direction of the maximum derivative.

Answer: [Maximum directional derivative] $=13$
[Unit vector in the direction of the maximum derivative] $=\left\langle\frac{5}{13}, \frac{12}{13}\right\rangle$
6. Give unit vectors in the directions in which the directional derivative of $f(x, y)=x+\sin (5 y)$ at $(2,0)$ are zero.

Answer: $\mathbf{u}= \pm \frac{\langle 5,-1\rangle}{\sqrt{26}}$
7. What are the critical points of $f(x, y)=x^{4}+32 x-y^{3}$?

Answer: Critical point: $(-2,0)$
8. Find the critical points of $f(x, y)=3 x y^{2}+x^{3}-3 x$.

Answer: Critical points: $(0,1),(0,-1),(1,0),(-1,0)$
9. $G(x, y)=2 x^{2}-x^{4}+10 y-y^{2}$ has a global maximum. What is it and where does it occur?

Answer: [Global maximum] $=26$ at $(\pm 1,5)$
10. A three-dimensional rectangular frame is to be constructed with wire that costs $\$ 1.00$ per meter for the four horizontal edges parallel to the front, $\$ 0.75$ per meter for the four horizontal edges parallel to the sides, and $\$ 1.50$ per meter for the four vertical edges. The volume of the box enclosed by the frame is to be 24 cubic meters What dimensions minimize the cost?

Answer: With x the lengths of the four edges parallel to the front, y the lengths of the four edges parallel to the sides, and z the height, [Cost] $=C(x, y)=4 x+3 y+\frac{144}{x y}$ - The frame should be 3 meters wide, 4 meters deep and 2 meters high.
11. Find the point on the plane $z=2 x+3 y$ that is closest to the point $(4,2,0)$. (Minimize the square of the distance from $(4,2,0)$ to a point on the plane.)

Answer: The closest point is $(2,-1,1)$
12. Find the critical points of $f=x^{3}-y^{3}-3 x y$ and use the Second-Derivative Test to classify them. The

FIGURE 2 ıd its level curves are in Figure 3.

FIGURE 3

Answer: Saddle point at $(0,0)$ - Local maximum at $(-1,1)$
13. Show that the Second-Derivative Test fails at the critical point of $h(x, y)=\frac{1}{3} y^{3}-x^{2} y$. Its graph is the "monkey saddle" in Figure 4. Its level curves are in Figure 5.

FIGURE 4

FIGURE 5

