Name \qquad Section \qquad
Work alone and use no books, notes, or calculators. Put your work on 8. " $\times 11$ " paper and staple it to the quiz when you turn it in.

1. What is the curvature at $x=0$ of $y=e^{2 x}$, oriented from left to right?
2. Use the formulas $\mathbf{v}=\frac{d s}{d t} \mathbf{T}, \mathbf{T}=\langle\cos \phi, \sin \phi\rangle, \mathbf{N}=\langle-\sin \phi, \cos \phi\rangle$, and $\kappa=\frac{d \phi}{d s}$ to derive the formula for the acceleration vector \mathbf{a} in terms of $\frac{d s}{d t}, \frac{d^{2} s}{d t^{2}}, \mathbf{T}, \mathbf{N}$ and κ.
3. Figure 1 shows the path of an object in an $x y$-plane with distances measured in meters. The center of curvature of its path at the origin is the point $C=(4,3)$. (a) (3 points) What is the curvature of its path at the origin? (b) (3 points) What is the unit normal vector \mathbf{N} to its path at the origin?
(c) (4 points) When the object is at the origin, it is traveling 5 meters per minute and its speed is increasing 10 meters per minute ${ }^{2}$. What is its acceleration vector at that time? Add it to the drawing, using the scales on the axes to measure its components.

FIGURE 1

FIGURE 2
4. (a) Based on the level curves of $z=f(x, y)$ in Figure 2, what is the approximate value of $f_{x}(20,10)$?
(b) What is the approximate directional derivative of f at $(20,10)$ in the direction toward the origin?
5. Draw the graph of $G(x, y)=-1-x^{2}-y^{2}$.

6 Draw and label three level curves of the function $W(x, y)=2 y+x^{2}$.
7. Give a formula for the linear function $z=M(x, y)$ with the values $M(1,1)=10, M(6,1)=30$, and $M(1,6)=0$.
8. Find the derivative $\frac{\partial^{2}}{\partial x \partial y}\left[\sin \left(x^{2}+y^{2}\right)\right]$.
9. Give an equation of the tangent plane to the graph of $f(x, y)=x^{2} y^{3}$ at $x=5, y=-1$.
10. What is the directional derivative of $H(x, y)=x y$ at $(3,-1)$ in the direction toward $(7,2)$?
11. What is the maximum directional derivative of $g(x, y, z)=\frac{1}{3} x^{3}+3 \ln y+e^{z}$ at $(1,3,0)$?

Scores (10 points per problem)

1	2	3	4	5	6

7	8	9	10	11	Total

