Name		Section
Work a	alone and use no books, notes, or calculators. Put your work on 8.", \times 1	11" paper and staple it to the quiz
when y	you turn it in.	
1	What is the curveture at $r = 0$ of $u = e^{2x}$ eviented from left to right?	

- 1. What is the curvature at x = 0 of $y = e^{2x}$, oriented from left to right?
- 2. Use the formulas $\mathbf{v} = \frac{ds}{dt}\mathbf{T}$, $\mathbf{T} = \langle \cos\phi, \sin\phi \rangle$, $\mathbf{N} = \langle -\sin\phi, \cos\phi \rangle$, and $\kappa = \frac{d\phi}{ds}$ to derive the formula for the acceleration vector \mathbf{a} in terms of $\frac{ds}{dt}$, $\frac{d^2s}{dt^2}$, \mathbf{T} , \mathbf{N} and κ .
- Figure 1 shows the path of an object in an xy-plane with distances measured in meters. The center of curvature of its path at the origin is the point C = (4,3). (a) (3 points) What is the curvature of its path at the origin? (b) (3 points) What is the unit normal vector N to its path at the origin?
 (c) (4 points) When the object is at the origin, it is traveling 5 meters per minute and its speed is

(c) (4 points) when the object is at the origin, it is traveling 5 meters per minute and its speed is increasing 10 meters per minute². What is its acceleration vector at that time? Add it to the drawing, using the scales on the axes to measure its components.

- 4. (a) Based on the level curves of z = f(x, y) in Figure 2, what is the approximate value of $f_x(20, 10)$? (b) What is the approximate directional derivative of f at (20, 10) in the direction toward the origin?
- 5. Draw the graph of $G(x, y) = -1 x^2 y^2$.
- 6 Draw and label three level curves of the function $W(x,y) = 2y + x^2$.
- 7. Give a formula for the linear function z = M(x, y) with the values M(1, 1) = 10, M(6, 1) = 30, and M(1, 6) = 0.
- 8. Find the derivative $\frac{\partial^2}{\partial x \partial y} [\sin(x^2 + y^2)].$
- **9.** Give an equation of the tangent plane to the graph of $f(x, y) = x^2 y^3$ at x = 5, y = -1.
- **10.** What is the directional derivative of H(x, y) = xy at (3, -1) in the direction toward (7, 2)?
- 11. What is the maximum directional derivative of $g(x, y, z) = \frac{1}{3}x^3 + 3\ln y + e^z$ at (1, 3, 0)?

Scores (10 points per problem)

1	2	3	4	5	6
			l	l	
7	8	9	10	11	Total