Math 20C (Shenk). Quiz 2 Solution. August 22, 2011.

1. $y=e^{2 x} \bullet y^{\prime}=2 e^{2 x} \bullet y^{\prime \prime}=4 e^{2 x} \bullet y^{\prime}(0)=2 \bullet y^{\prime \prime}(0)=4$ -
$\kappa(0)=\frac{y^{\prime \prime}(0)}{\left\{1+\left[y^{\prime}(0)\right]^{2}\right\}^{3 / 2}}=\frac{4}{\left(1+2^{2}\right)^{3 / 2}}=\frac{4}{5^{3 / 2}}$
2. $\quad \mathbf{a}=\frac{d}{d t}(\mathbf{v})=\frac{d}{d t}\left(\frac{d s}{d t} \mathbf{T}\right)=\frac{d^{2} s}{d t^{2}} \mathbf{T}+\frac{d s}{d t} \frac{d \mathbf{T}}{d t}$ by the definition of the velocity vector and the Product Rule.

- $\frac{d \mathbf{T}}{d \phi}=\frac{d}{d \phi}\langle\cos \phi, \sin \phi\rangle=\langle-\sin \phi \cdot \cos \phi\rangle=\mathbf{N} \bullet \frac{d \phi}{d s}=\kappa \bullet$

By the Chain Rule, $\frac{d \mathbf{T}}{d t}=\frac{d T}{d \phi} \frac{d \phi}{d s} \frac{d s}{d t}=\kappa \frac{d s}{d t} \mathbf{N} \bullet$
$\mathbf{a}=\frac{d^{2} s}{d t^{2}} \mathbf{T}+\left(\frac{d s}{d t}\right)\left(\kappa \frac{d s}{d t} \mathbf{N}\right)=\frac{d^{2} s}{d t^{2}} \mathbf{T}+\kappa\left(\frac{d s}{d t}\right)^{2} \mathbf{N}$
3. (a) The radius of curvature ρ is the distance $\overline{O C}$ from the origin to the the center of curvature $C=(4,3)$.

- $\rho=\sqrt{4^{2}+3^{2}}=\sqrt{25}=5$ - Since the curve bends to the left of the tangent vector, κ is positive. $\kappa=\frac{1}{\rho}=\frac{1}{5}$
(b) Since the tangent vector points down toward the right, the normal vector points toward the center of curvature $C=(4,3)$ and is the unit vector with the direction of $\overrightarrow{O C}=\langle 4,3\rangle \bullet \mathbf{N}=\frac{\langle 4,3\rangle}{|\langle 4,3\rangle|}=\left\langle\frac{4}{5}, \frac{3}{5}\right\rangle$
(c) $\mathbf{T}=\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle \bullet \mathbf{a}=s^{\prime \prime} \mathbf{T}+\kappa\left(s^{\prime}\right)^{2} \mathbf{N}=10\left\langle\frac{3}{5},-\frac{4}{5}\right\rangle+\frac{1}{5}(5)^{2}\left\langle\frac{4}{5}, \frac{3}{5}\right\rangle=\langle 6,-8\rangle+\langle 4,3\rangle=\langle 10,-5\rangle$ meters per minute ${ }^{2}$ - Figure A3

Figure A3

4. (a) From the level curve $L=3$ to the level curve $L=2$ along $y=10$:
$\Delta L=2-3=-1$ and $\Delta x \approx 5 \bullet L_{x}(20,10) \approx \frac{\Delta L}{\Delta x} \approx \frac{-1}{5}=-0.2$
(b) From the level curve $L=2$ to the level curve $L=3$ on the line through $(20,10)$ and the origin,
$\Delta L=3-2=1$ and $\Delta s \approx 4$. • [Directional derivative] $\approx \frac{\Delta L}{\Delta s} \approx \frac{1}{4}=0.25$
5. The graph of $G(x, y)=-1-x^{2}-y^{2}$ is a circular paraboloid which opens downward and has its vertex at -1 on the z-axis. - Figure A5

Figure A5

Figure A6
6. $\quad 2 y+x^{2}=c \Longleftrightarrow y=\frac{1}{2} x^{2}+\frac{1}{2} c$ • One answer, using $c=0,-2$, and 2: Figure A6
7. $M_{x}=\frac{M(6,1)-M(1,1)}{6-1}=\frac{30-20}{5}=4 \cdot M_{y}=\frac{M(1,6)-M(1,1)}{6-1}=\frac{0-10}{5}=-2 \cdot M(1,1)=10$ • $M(x, y)=10+4(x-1)-2(y-1)$
8. $\quad \frac{\partial}{\partial y} \sin \left(x^{2}+y^{2}\right)=\cos \left(x^{2}+y^{2}\right) \frac{\partial}{\partial y}\left(x^{2}+y^{2}\right)=2 y \cos \left(x^{2}+y^{2}\right)$ -
$\frac{\partial^{2}}{\partial x \partial y} \sin \left(x^{2}+y^{2}\right)=\frac{\partial}{\partial x}\left[2 y \cos \left(x^{2}+y^{2}\right)\right]=2 y\left[-\sin \left(x^{2}+y^{2}\right) \frac{\partial}{\partial x}\left(x^{2}+y^{2}\right)\right]=-4 x y \sin \left(x^{2}+y^{2}\right)$
9. $\quad f(x, y)=x^{2} y^{3} \bullet f_{x}=2 x y^{3} \bullet f_{y}=3 x^{2} y^{2} \cdot f(5,-1)=5^{2}(-1)^{3}=-15 \cdot f_{x}(5,-1)=2(5)(-1)^{3}=-10$ - $f_{y}(5,-1)=3(5)^{2}(-1)^{2}=75$ - Tangent plane: $z=-15-19(x-5)+75(y+1)$
10. $f=x y \bullet f_{x}=y \bullet f_{y}=x \bullet f_{x}(3,-1)=-1 \bullet f_{y}(3,-1)=3$ - For $P=(3,-1)$ and $Q=(7,2)$,
$\overrightarrow{P Q}=\langle 7-3,2-(-1)\rangle=\langle 4,3\rangle \cdot \mathbf{u}=\frac{\langle 4,3\rangle}{|\langle 4,3\rangle|}=\left\langle\frac{4}{5}, \frac{3}{5}\right\rangle$ 。
$D_{\mathbf{u}} f(3,-1)=u_{1} f_{x}+u_{2} f_{y}=\left(\frac{4}{5}\right)(-1)+\left(\frac{3}{5}\right)(3)=1$
11. $g=\frac{1}{3} x^{3}+3 \ln y+e^{z} \bullet \nabla g=\left\langle g_{x}, g_{y}, g_{z}\right\rangle=\left\langle x^{2}, \frac{3}{y}, e^{z}\right\rangle \bullet \nabla g(1,3,0)=\langle 1,1,1\rangle \bullet$
$[$ Maximum directional derivative of g at $(1,3,0)]=|\nabla g(1,3,0)|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$

