Math 20C. Lecture Examples.

Section 12.2. Vectors in three dimensions ${ }^{\dagger}$

To use rectangular $x y z$-coordinates in three-dimensional space, we introduce mutually perpendicular $x-$, y-, and z-axes intersecting at their origins, as in Figure 1. These axes form $x y$-, $x z$-, and $y z$-coordinate planes, which divide the space into eight octants.

FIGURE 1

FIGURE 2

The coordinates (x, y, z) of a point in space are determined by planes passing through the point and perpendicular to the coordinate axes (Figure 2).
Example $1 \quad$ Sketch the box consisting of all points (x, y, z) with $0 \leq x \leq 2,2 \leq y \leq 3$, and $0 \leq z \leq 2$. What are the coordinates of the eight corners of the box?

Answer: Figure A1. - The corners of its base, ordered counterclockwise, are $(2,2,0),(2,3,0),(0,3,0)$, and $(0,2,0)$. - The corners of its top are $(2,2,2),(2,3,2),(0,3,2)$, and $(0,2,2)$.

Figure A1

[^0]
The Pythagorean Theorem and the distance between two points

If a rectangular box has length a, width b, and height c, as in Figure 6, then, by the Pythagorean Theorem for a right triangle, the length of a diagonal of its base is $\sqrt{a^{2}+b^{2}}$. Then, because the diagonal of the box is the hypotenuse of a right triangle with base of length $\sqrt{a^{2}+b^{2}}$ and height c (Figure 7), its length is the square root of $\left[\sqrt{a^{2}+b^{2}}\right]^{2}+c^{2}=a^{2}+b^{2}+c^{2}$. This gives the Pythagorean Theorem in space:

$$
\left[\begin{array}{l}
\text { The length of a diagonal of a } \\
\text { rectangular box with sides } a, b, \text { and } c \text { is }
\end{array}\right]=\sqrt{a^{2}+b^{2}+c^{2}} \text {. }
$$

FIGURE 6

FIGURE 12.5

FIGURE 7

Example $2 \quad$ What is the length of the diagonals of the box from Example 1?
Answer: The length of each of its four diagonals is $\sqrt{1^{2}+2^{2}+2^{2}}=3$
Because points $P=\left(x_{1}, y_{1}, z_{1}\right)$ and $Q=\left(x_{2}, y_{2}, z_{2}\right)$ in $x y z$-space are at diagonally opposite corners of a rectangular box with sides of lengths $\left|x_{2}-x_{1}\right|,\left|y_{2}-y_{1}\right|$, and $\left|z_{2}-z_{1}\right|$, the distance $\overline{P Q}$ between the points is

$$
\overline{P Q}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}+\left(z_{2}-z_{1}\right)^{2}}
$$

Example $3 \quad$ Describe the set of points defined by the equation $(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=16$. Answer: $(x-1)^{2}+(y-2)^{2}+(z-3)^{2}=16$ is the sphere of radius 4 with its center at $(1,2,3)$.
Example $4 \quad$ Describe the set of points defined by the equation $x^{2}+y^{2}=25$.
Answer: $x^{2}+y^{2}=25$ is the cylinder of radius 5 with the z-axis as its axis.

Vectors in space

A nonzero vector in $x y z$ - space, like a nonzero vector \mathbf{v} in an $x y$-plane, represents a positive number and a direction. If we put the base of the vector at the origin, as in Figure 8, then the coordinates (a, b, c) of its tip are the $x-, y$-, and z-components of the vector and we write $\mathbf{v}=\langle a, b, c\rangle$. The zero vector $\mathbf{0}=\langle 0,0,0\rangle$ has zero length and no direction.

FIGURE 8

The Pythagorean Theorem in space shows that the length of the vector $\mathbf{v}=\langle a, b, c\rangle$ is equal to the square root of the sum of the squares of its components:

$$
|\mathbf{c}|=|\langle a, b, c\rangle|=\sqrt{a^{2}+b^{2}+c^{2}}
$$

The rules for adding two vectors in space and multiplying a vector in space by a real number are analogous to those for vectors in a plane:

Definition 1 For any vectors $\mathbf{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\mathbf{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$ and any number λ,

$$
\begin{gathered}
\mathbf{v}+\mathbf{w}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle+\left\langle a_{2}, b_{2}, c_{2}\right\rangle=\left\langle a_{1}+a_{2}, b_{1}+b_{2}, c_{1}+c_{2}\right\rangle \\
\lambda \mathbf{v}=\lambda\left\langle a_{1}, b_{1}, c_{1}\right\rangle=\left\langle\lambda a_{1}, \lambda b_{1}, \lambda c_{1}\right\rangle
\end{gathered}
$$

These operations and the subtraction of vectors in space have the same geometric interpretations as in an $x y$-plane (see Figures 9 through 12.)

FIGURE 9

FIGURE 11

FIGURE 10

FIGURE 12

The unit vectors \mathbf{i}, j, and k

In the last section we expressed the vector $\langle a, b\rangle$ in the plane as $a \mathbf{i}+b \mathbf{j}$ where \mathbf{i} and \mathbf{j} are unit vectors in the directions of the positive x - and y-axes, respectively. In three dimensions, we also use a third unit vector \mathbf{k} in the direction of the positive z-axis, as in Figure 13. Then $\langle a, b, c\rangle=a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$ for any a, b, and c (Figure 14).

FIGURE 13

FIGURE 14

Example $5 \quad$ Write $\mathbf{z}=\mathbf{u}+2 \mathbf{v}+3 \mathbf{w}$ in the form $a \mathbf{i}+b \mathbf{j}+c \mathbf{k}$, where $\mathbf{u}=3 \mathbf{i}-\mathbf{j}, \mathbf{v}=\mathbf{j}-3 \mathbf{k}$ and $\mathbf{w}=\mathbf{i}+\mathbf{k}$.

$$
\text { Answer: } \mathbf{z}=6 \mathbf{i}+\mathbf{j}-3 \mathbf{k}
$$

The position vector $\overrightarrow{O P}$ of a point (x, y, z) in space is $\langle x, y, z\rangle$ (Figure 15). The displacement vector $\overrightarrow{P Q}$ from $P=\left(x_{1}, y_{1}, z_{1}\right)$ to $Q=\left(x_{2}, y_{2}, z_{2}\right)$ is

$$
\overrightarrow{P Q}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle
$$

as is shown in Figure 16 for a case where $y_{2}-y_{1}$ and $z_{2}-z_{1}$ are positive and $x_{2}-x_{1}$ is negative.

FIGURE 15

$$
\overrightarrow{P Q}=\left\langle x_{2}-x_{1}, y_{2}-y_{1}, z_{2}-z_{1}\right\rangle
$$

FIGURE 16

Example 6 Three adjacent vertices of a parallelogram $P Q R S$ in space are $P=(1,3,2)$, $Q=(4,5,3)$, and $R=(2,-1,0)$. What are the coordinates of the point S opposite Q ? Answer: Use the schematic sketch in Figure A6. - $S=(-1,-3,-1)$

Figure A6

Parametric equations of lines in space

A line in $x y z$-space can be described by giving the coordinates of a point $P=\left(x_{0}, y_{0}, z_{0}\right)$ on it and a nonzero vector $\mathbf{v}=\langle a, b, c\rangle$ parallel to it, as in Figure 17.

Theorem 1 The line L through the point $P=\left(x_{0}, y_{0}, z_{0}\right)$ and parallel to the nonzero vector $\mathbf{v}=\langle a, b, c\rangle$ in $x y z$-space has the parametric equations,

$$
L:\left\{\begin{array}{l}
x=x_{0}+a t \\
y=y_{0}+b t \\
z=z_{0}+c t
\end{array}\right.
$$

Example $7 \quad$ Give parametric equations for the line L through the point $(6,4,3)$ and parallel to the vector $2 \mathbf{i}+5 \mathbf{j}-7 \mathbf{k}$.
Answer: $L: x=6+2 t, y=4+5 t, z=3-7 t$
Example $8 \quad$ Give parametric equations for the line L through $P=(5,3,1)$ and $Q=(7,-2,0)$.
Answer: $L: x=5+2 t, y=3-5 t, z=1-t$
Example $9 \quad$ Find the intersection of the lines $L_{1}: x=2-t, y=3+t, z=4-2 t$ and $L_{2}: x=-3+t, y=-1+2 t, z=9-3 t$
Answer: Intersection: ($0,5,0$)

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: \dagger
Section 12.3: Examples 1, 2, and 6
Section 12.5: Examples 1 and 2

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 12.2 of Calculus, Early Transcendentals by Rogawski.

[^1]: ${ }^{\dagger}$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

