Math 20C. Lecture Examples.

Section 12.3. The dot product and angles between vectors^{\dagger}

Definition 1 The DOT PRODUCT of vectors $\mathbf{v} = \langle a_1, b_1 \rangle$ and $\mathbf{w} = \langle a_2, b_2 \rangle$ in a coordinate plane is the number

$$\mathbf{v} \cdot \mathbf{w} = a_1 a_2 + b_1 b_2.$$

If $\mathbf{v} = \langle a_1, b_1, c_1 \rangle$ and $\mathbf{w} = \langle a_2, b_2, c_2 \rangle$ are in xyz-space, then

$$\mathbf{v} \cdot \mathbf{w} = a_1 a_2 + b_1 b_2 + c_1 c_2.$$

Example 1 Calculate $\mathbf{v} \cdot \mathbf{w}$ for $\mathbf{v} = \langle 6, -2 \rangle$ and $\mathbf{w} = \langle 4, 3 \rangle$.

Answer: $\mathbf{v} \cdot \mathbf{w} = 18$.

Example 2 What is $\mathbf{v} \cdot \mathbf{w}$ for $\mathbf{v} = \langle 6, -2, 3 \rangle$ and $\mathbf{w} = \langle 4, 3, -6 \rangle$.

Answer: $\mathbf{v} \cdot \mathbf{w} = 0$

The dot product satisfies the following rules for any vectors \mathbf{u}, \mathbf{v} , and \mathbf{w} and any number λ :

$$\mathbf{v} \cdot \mathbf{w} = \mathbf{w} \cdot \mathbf{v}$$
$$(\lambda \mathbf{v}) \cdot \mathbf{w}) = \mathbf{v} \cdot (\lambda \mathbf{w}) = \lambda (\mathbf{v} \cdot \mathbf{w})$$
$$(\mathbf{v} + \mathbf{w}) \cdot \mathbf{u} = \mathbf{v} \cdot \mathbf{u} + \mathbf{w} \cdot \mathbf{u}$$
$$\mathbf{v} \cdot \mathbf{v} = |\mathbf{v}|^2$$

The dot product is useful because of the next theorem.

Theorem 1 If neither \mathbf{v} nor \mathbf{w} is the zero vector, then

$$\mathbf{v} \cdot \mathbf{w} = |\mathbf{v}| |\mathbf{w}| \cos \theta \tag{1}$$

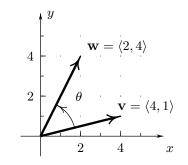
where θ is an angle between **v** and **w**.

An angle between nonzero vectors can be found with the formula,

$$\cos\theta = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|} \tag{2}$$

which comes from (1).

[†]Lecture notes to accompany Section 12.3 of Calculus, Early Transcendentals by Rogawski.



Section 12.3, p. 2

FIGURE 1

Answer:
$$\theta = \cos^{-1} \left(\frac{12}{\sqrt{17}\sqrt{20}} \right) \doteq 0.862$$
 radians

Perpendicular vectors

The dot product provides a way to determine whether two vectors are perpendicular.

Theorem 2 Two vectors \mathbf{v} and \mathbf{w} are perpendicular if and only if $\mathbf{v} \cdot \mathbf{w} = 0$.

By convention, the zero vector is considered to be perpendicular to all vectors.

Answer: $k = \frac{2}{3}$ • The vectors are $\langle \frac{2}{3}, -2 \rangle$ and $\langle -3, -1 \rangle$. • Figure A4

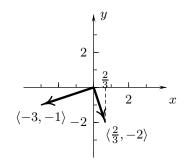


Figure A4

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:[‡]

Section 12.3: Examples 1–3, 6

Section 12.4: Examples 1–6

 $[\]ddagger$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.