Math 20C. Lecture Examples.

Section 12.3. The dot product and angles between vectors ${ }^{\dagger}$

Definition 1 The DOT PRODUCT of vectors $\mathbf{v}=\left\langle a_{1}, b_{1}\right\rangle$ and $\mathbf{w}=\left\langle a_{2}, b_{2}\right\rangle$ in a coordinate plane is the number

$$
\mathbf{v} \cdot \mathbf{w}=a_{1} a_{2}+b_{1} b_{2}
$$

If $\mathbf{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\mathbf{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$ are in $x y z$-space, then

$$
\mathbf{v} \cdot \mathbf{w}=a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}
$$

Example $1 \quad$ Calculate $\mathbf{v} \cdot \mathbf{w}$ for $\mathbf{v}=\langle 6,-2\rangle$ and $\mathbf{w}=\langle 4,3\rangle$.
Answer: v $\cdot \mathbf{w}=18$.
Example $2 \quad$ What is $\mathbf{v} \cdot \mathbf{w}$ for $\mathbf{v}=\langle 6,-2,3\rangle$ and $\mathbf{w}=\langle 4,3,-6\rangle$.
Answer: v $\mathbf{w}=0$
The dot product satisfies the following rules for any vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} and any number λ :

$$
\begin{aligned}
\mathbf{v} \cdot \mathbf{w} & =\mathbf{w} \cdot \mathbf{v} \\
(\lambda \mathbf{v}) \cdot \mathbf{w}) & =\mathbf{v} \cdot(\lambda \mathbf{w})=\lambda(\mathbf{v} \cdot \mathbf{w}) \\
(\mathbf{v}+\mathbf{w}) \cdot \mathbf{u} & =\mathbf{v} \cdot \mathbf{u}+\mathbf{w} \cdot \mathbf{u} \\
\mathbf{v} \cdot \mathbf{v} & =|\mathbf{v}|^{2}
\end{aligned}
$$

The dot product is useful because of the next theorem.
Theorem 1 If neither \mathbf{v} nor \mathbf{w} is the zero vector, then

$$
\begin{equation*}
\mathbf{v} \cdot \mathbf{w}=|\mathbf{v}||\mathbf{w}| \cos \theta \tag{1}
\end{equation*}
$$

where θ is an angle between \mathbf{v} and \mathbf{w}.

An angle between nonzero vectors can be found with the formula,

$$
\begin{equation*}
\cos \theta=\frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}||\mathbf{w}|} \tag{2}
\end{equation*}
$$

which comes from (1).

[^0]Example $3 \quad$ Find an angle θ between the vectors $\mathbf{v}=\langle 4,1\rangle$ and $\mathbf{w}=\langle 2,4\rangle$ in Figure 1. Give exact and approximate decimal values.

FIGURE 1

$$
\text { Answer: } \theta=\cos ^{-1}\left(\frac{12}{\sqrt{17} \sqrt{20}}\right) \doteq 0.862 \text { radians }
$$

Perpendicular vectors

The dot product provides a way to determine whether two vectors are perpendicular.
Theorem 2 Two vectors \mathbf{v} and \mathbf{w} are perpendicular if and only if $\mathbf{v} \cdot \mathbf{w}=0$.
By convention, the zero vector is considered to be perpendicular to all vectors.
Example $4 \quad$ Find the constant k such that the vectors $\langle-3,-1\rangle$ and $\langle k,-2\rangle$ are perpendicular. Then draw the two vectors.
Answer: $k=\frac{2}{3}$ - The vectors are $\left\langle\frac{2}{3},-2\right\rangle$ and $\langle-3,-1\rangle$. - Figure A4

Figure A4

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: \ddagger
Section 12.3: Examples 1-3, 6
Section 12.4: Examples 1-6

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 12.3 of Calculus, Early Transcendentals by Rogawski.

[^1]: \ddagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

