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Math 20C. Lecture Examples.

Section 12.4. The cross product†

There are two directions perpendicular to two nonzero and nonparallel vectors v and w in xyz-space.

They are distinguished by using the right-hand rule: A nonzero vector u perpendicular to v and w

has the direction given by the right-hand rule from v toward w if, when the fingers of a right hand curl

from u toward v, as in Figure 1, the thumb points in the direction of u.

FIGURE 1 FIGURE 2

The right-hand rule is used in the definition of the cross product of two vectors.

Definition 1 The cross product v×w of nonzero and nonparallel vectors v and w in xyz-space is the

vector perpendicular to v and w with direction determined by the right-hand rule from v toward w and

whose length is

|v ×w| = |v||w| sin θ (1)

where θ is the angle with 0 < θ < π between v and w. (Figure 2). If v or w is the zero vector or they

are parallel, then v × w is the zero vector.

The cross product has the properties listed in the next theorem. Notice the minus sign in

equation (2).

Theorem 1 For any vectors u,v, and w in xyz-space and any number λ,

v ×w = −w × v (2)

(λv) ×w = v × (λw) = λ(v ×w) (3)

u× (v + w) = u× v + u×w (4)

.

†Lecture notes to accompany Section 12.4 of Calculus, Early Transcendentals by Rogawski.
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Calculating cross products with determinants
Cross products can be calculated using the notation of determinants from linear algebra.

The 2 × 2 (two-by-two) determinant
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denotes the number x1y2 − x2y1 (Figure 3).

FIGURE 3

Then 3 × 3 determinants can be calculated with the formula,
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.

Each of the determinants on the right of (5) is obtained by crossing out the row and column of

one of the numbers in the first row of the 3× 3 determinant. The expression on the right equals the first

number in the first row of the original determinant, multiplied by the corresponding 2 × 2 determinant,

minus the second number in the first row multiplied by the corresponding 2 × 2 determinant, plus the

third number in the first row multiplied by the corresponding 2× 2 determinant. This procedure is caled

the expansion of the determinant by its first row (Figure 4).

FIGURE 4

Example 1 Evaluate
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Answer: The given determinant equals 34.
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Now we can give a procedure for calculating cross products from the components of the vectors.

Theorem 2 The cross product of vectors v = 〈a1, b1, c1〉 and w = 〈a2, b2, c2〉 is equal to the
determinant

v × w = 〈a1, b1, c1〉 × 〈a2, b2, c2〉 =
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that is obtained by putting the unit vectors i, j, and k in the first row, the components of v in the second
row, and the components of w in the third row.

Example 2 Find the cross product of v = 〈3, 1,−2〉 and w = 〈0, 4, 2〉.

Answer: v × w = 〈10,−6, 12〉
Example 3 As a partial check of the result of Example 2, show that each the given vectors is

perpendicular to the calculated cross product.

Answer: Let u = 〈10,−6, 12〉 be the calculated cross product. • v · u = 0 • w · u = 0

Example 4 Find a nonzero vector perpendicular to v = 4i− j + k and w = 2i− k.

Answer: One answer: The cross product v × w = i + 6j + 2k is perpendicular to v and w.

Cross products and areas

Theorem 3 (a) If the nonzero vectors v and
w with their bases at the same point in xyz-space form two sides of a parallelogram, then

[The area of the parallelogram] = |v ×w|.

(b) If the vectors v and w with their bases at the same point in xyz-space form two sides of a triangle,
then

[The area of the triangle] = 1

2
|v × w|.

Example 5 Find the area of the triangle with vertices P = (1, 2, 3), Q = (4, 2, 6) and R = (5, 3, 7).

Answer: [Area of the triangle] = 3

2

√
2

The scalar triple product
The number u · (v × w) is called a scalar triple product of the three vectors.† It can be calculated
as a determinant:

Theorem 3 (The scalar triple product) For vectors u = 〈a1, b1, c1〉, v = 〈a2, b2, c2〉, and
w = 〈a3, b3, c3〉

u · (v × w) =
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where the rows of the determinant are the components of u,v, and w in that order.

†u · (v×w) is called a scalar triple product because it is a scalar (number) and to distinguish it from the vector triple product

u × (v × w).
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Example 6 Calculate u · (v × w) for u = 〈3, 3,−1〉,v = 〈4, 6, 5〉, and w = 〈2, 2,−1〉.

Answer: u · (v × w) = −2

Scalar triple products and volumes
If we position three vectors u,v, and w with their bases at the same point, then they form adjacent
edges of a parallelepiped, as in Figure 6, or adjacent edges of a tetrahedron, as in Figure 7. The
volumes of these solids can be calculated with the scalar triple product.

FIGURE 6 FIGURE 7

Theorem 5 (a) If three adjacent edges of a parallelepiped are formed by the the vectors u,v, and w,
then

[The volume of the parallelepiped] = |u · (v ×w)|.

(b) If the vectors u,v, and w form adjacent sides of a tetrahedron, then

[The volume of the tetrahedron] = 1

6
|u · (v × w)|.

Example 7 What is the volume of the parallelepiped with vertex P = (1, 1, 1) and adjacent vertices
Q = (4, 4, 0), R = (5, 7, 6), and S = (3, 3, 0)?

Answer: [Volume of the parallelepiped] = 2

Interactive Examples

Work the following Interactive Examples on Shenk’s web page, http//www.math.ucsd.edu/ ãshenk/:†

Section 12.4: Examples 1–7

†The chapter and section numbers on Shenk’s web site refer to his calculus manuscript and not to the chapters and sections

of the textbook for the course.


