(8/1/08)
Math 20C. Lecture Examples.

Section 12.4. The cross product!

There are two directions perpendicular to two nonzero and nonparallel vectors v and w in zyz-space.
They are distinguished by using the RIGHT-HAND RULE: A nonzero vector u perpendicular to v and w
has the direction given by the right-hand rule from v toward w if, when the fingers of a right hand curl
from u toward v, as in Figure 1, the thumb points in the direction of u.
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The right-hand rule is used in the definition of the cross product of two vectors.

Definition 1 The cross product v X W of nonzero and nonparallel vectors v and W in xyz-space is the
vector perpendicular to v and W with direction determined by the right-hand rule from v toward w and
whose length is

|[v x w| = |v||w]|sinf (1)

where 0 is the angle with 0 < 0 < 7 between v and w. (Figure 2). If v or W is the zero vector or they
are parallel, then v X W is the zero vector.

The cross product has the properties listed in the next theorem. Notice the minus sign in
equation (2).

Theorem 1 For any vectors U, v, and W in xyz-space and any number \,

VXW=—-WXYV (2)
(AV) x W=V X (Aw) = A(V x W) (3)
UX(V+wW)=uxv+uxw (4)

fLecture notes to accompany Section 12.4 of Calculus, Early Transcendentals by Rogawski.
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Calculating cross products with determinants
Cross products can be calculated using the notation of DETERMINANTS from linear algebra.

The 2 X 2 (two-by-two) determinant

Tl T2
Y1 Y2

denotes the number x1y2 — z2y1 (Figure 3).
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Then 3 x 3 determinants can be calculated with the formula,
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Each of the determinants on the right of (5) is obtained by crossing out the row and column of
one of the numbers in the first row of the 3 X 3 determinant. The expression on the right equals the first
number in the first row of the original determinant, multiplied by the corresponding 2 x 2 determinant,
minus the second number in the first row multiplied by the corresponding 2 x 2 determinant, plus the
third number in the first row multiplied by the corresponding 2 x 2 determinant. This procedure is caled
the EXPANSION of the determinant by its first row (Figure 4).
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Example 1 Evaluate |1 0 6
5 1 -2

Answer: The given determinant equals 34.
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Now we can give a procedure for calculating cross products from the components of the vectors.

Theorem 2 The cross product of vectors v = {a1,b1,c1) and W = (ag,ba,c2) is equal to the
determinant
i j k
waz<a17blvcl> X <G,2,b2,62>: al bl C1
az by co

that is obtained by putting the unit vectors i, j, and k in the first row, the components of v in the second
row, and the components of W in the third row.

Example 2 Find the cross product of v = (3,1, —2) and w = (0, 4, 2).
Answer: v X w = (10, —6, 12)

Example 3 As a partial check of the result of Example 2, show that each the given vectors is
perpendicular to the calculated cross product.

Answer: Let u = (10, —6, 12) be the calculated cross product. ® v-u=0 ® w-u=0
Example 4 Find a nonzero vector perpendicular to v =4i — j+ k and w = 2i — k.

Answer: One answer: The cross product v X w = i 4+ 6j + 2k is perpendicular to v and w.

Cross products and areas

Theorem 3 (a) If the nonzero vectors v and
w with their bases at the same point in xyz-space form two sides of a parallelogram, then

[The area of the parallelogram] = |v x w|.

(b) If the vectors v and W with their bases at the same point in xyz-space form two sides of a triangle,
then

[The area of the triangle] = %|V X W|.

Example 5 Find the area of the triangle with vertices P = (1,2,3),Q = (4,2,6) and R = (5,3,7).

Answer: [Area of the triangle] = %\/5

The scalar triple product
The number u - (v X w) is called a SCALAR TRIPLE PRODUCT of the three vectors.! It can be calculated
as a determinant:

Theorem 3 (The scalar triple product) For vectors u = {(a1,b1,c1), Vv = (ag, bz, c2), and
W = (a3, bs, c3)

a1 b1 c
u-(VXw)=las by c
az b3 c3

where the rows of the determinant are the components of U, v, and W in that order.

tu. (v X w) is called a scalar triple product because it is a scalar (number) and to distinguish it from the vector triple product
u X (v X w).
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Example 6 Calculate u- (v x w) for u=(3,3,-1),v = (4,6,5), and w = (2,2, —1).
Answer:u: (v X w) = —2
Scalar triple products and volumes
If we position three vectors u, v, and w with their bases at the same point, then they form adjacent

edges of a PARALLELEPIPED, as in Figure 6, or adjacent edges of a TETRAHEDRON, as in Figure 7. The
volumes of these solids can be calculated with the scalar triple product.
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Theorem 5 (a) If three adjacent edges of a parallelepiped are formed by the the vectors u, v, and w,
then
[The volume of the parallelepiped] = |u - (v x wW)|.

(b) If the vectors u, v, and W form adjacent sides of a tetrahedron, then

[The volume of the tetrahedron] = %|u (v x W)

Example 7 What is the volume of the parallelepiped with vertex P = (1,1, 1) and adjacent vertices
Q=4,4,0),R=(5,7,6),and S = (3,3,0)7

Answer: [Volume of the parallelepiped] = 2

Interactive Examples
Work the following Interactive Examples on Shenk’s web page, http//www.math.ucsd.edu/ ashenk/:"
Section 12.4: Examples 1-7

TThe chapter and section numbers on Shenk’s web site refer to his calculus manuscript and not to the chapters and sections

of the textbook for the course.



