Math 20C. Lecture Examples.

Section 12.4. The cross product ${ }^{\dagger}$

There are two directions perpendicular to two nonzero and nonparallel vectors \mathbf{v} and \mathbf{w} in $x y z$-space. They are distinguished by using the RIGHT-HAND RULE: A nonzero vector \mathbf{u} perpendicular to \mathbf{v} and \mathbf{w} has the direction given by the right-hand rule from \mathbf{v} toward \mathbf{w} if, when the fingers of a right hand curl from \mathbf{u} toward \mathbf{v}, as in Figure 1, the thumb points in the direction of \mathbf{u}.

FIGURE 1

FIGURE 2

The right-hand rule is used in the definition of the cross product of two vectors.
Definition 1 The cross product $\mathbf{v} \times \mathbf{w}$ of nonzero and nonparallel vectors \mathbf{v} and \mathbf{w} in $x y z$-space is the vector perpendicular to \mathbf{v} and \mathbf{w} with direction determined by the right-hand rule from \mathbf{v} toward \mathbf{w} and whose length is

$$
\begin{equation*}
|\mathbf{v} \times \mathbf{w}|=|\mathbf{v}||\mathbf{w}| \sin \theta \tag{1}
\end{equation*}
$$

where θ is the angle with $0<\theta<\pi$ between \mathbf{v} and \mathbf{w}. (Figure 2). If \mathbf{v} or \mathbf{w} is the zero vector or they are parallel, then $\mathbf{v} \times \mathbf{w}$ is the zero vector.

The cross product has the properties listed in the next theorem. Notice the minus sign in equation (2).

Theorem 1 For any vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} in $x y z$-space and any number λ,

$$
\begin{align*}
\mathbf{v} \times \mathbf{w} & =-\mathbf{w} \times \mathbf{v} \tag{2}\\
(\lambda \mathbf{v}) \times \mathbf{w} & =\mathbf{v} \times(\lambda \mathbf{w})=\lambda(\mathbf{v} \times \mathbf{w}) \tag{3}\\
\mathbf{u} \times(\mathbf{v}+\mathbf{w}) & =\mathbf{u} \times \mathbf{v}+\mathbf{u} \times \mathbf{w} \tag{4}
\end{align*}
$$

[^0]
Calculating cross products with determinants

Cross products can be calculated using the notation of DETERMINANTS from linear algebra.
The 2×2 (two-by-two) determinant

$$
\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|
$$

denotes the number $x_{1} y_{2}-x_{2} y_{1}$ (Figure 3).

FIGURE 3

Then 3×3 determinants can be calculated with the formula,

$$
\left|\begin{array}{lll}
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3} \\
z_{1} & z_{2} & z_{3}
\end{array}\right|=x_{1}\left|\begin{array}{ll}
y_{2} & y_{3} \\
z_{2} & z_{3}
\end{array}\right|-x_{2}\left|\begin{array}{cc}
y_{1} & y_{3} \\
z_{1} & z_{3}
\end{array}\right|+x_{3}\left|\begin{array}{ll}
y_{1} & y_{2} \\
z_{1} & z_{2}
\end{array}\right|
$$

Each of the determinants on the right of (5) is obtained by crossing out the row and column of one of the numbers in the first row of the 3×3 determinant. The expression on the right equals the first number in the first row of the original determinant, multiplied by the corresponding 2×2 determinant, minus the second number in the first row multiplied by the corresponding 2×2 determinant, plus the third number in the first row multiplied by the corresponding 2×2 determinant. This procedure is caled the EXPANSION of the determinant by its first row (Figure 4).

FIGURE 4

Example $1 \quad$ Evaluate $\left|\begin{array}{ccc}3 & 2 & 4 \\ -1 & 0 & 6 \\ 5 & 1 & -2\end{array}\right|$.
Answer: The given determinant equals 34 .

Now we can give a procedure for calculating cross products from the components of the vectors.
Theorem 2 The cross product of vectors $\mathbf{v}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$ and $\mathbf{w}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$ is equal to the determinant

$$
\mathbf{v} \times \mathbf{w}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle \times\left\langle a_{2}, b_{2}, c_{2}\right\rangle=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2}
\end{array}\right|
$$

that is obtained by putting the unit vectors \mathbf{i}, \mathbf{j}, and \mathbf{k} in the first row, the components of \mathbf{v} in the second row, and the components of \mathbf{w} in the third row.

Example $2 \quad$ Find the cross product of $\mathbf{v}=\langle 3,1,-2\rangle$ and $\mathbf{w}=\langle 0,4,2\rangle$.
Answer: $\mathbf{v} \times \mathbf{w}=\langle 10,-6,12\rangle$
Example 3 As a partial check of the result of Example 2, show that each the given vectors is perpendicular to the calculated cross product.
Answer: Let $\mathbf{u}=\langle 10,-6,12\rangle$ be the calculated cross product. $\bullet \mathbf{v} \cdot \mathbf{u}=0 \bullet \mathbf{w} \cdot \mathbf{u}=0$
Example $4 \quad$ Find a nonzero vector perpendicular to $\mathbf{v}=4 \mathbf{i}-\mathbf{j}+\mathbf{k}$ and $\mathbf{w}=2 \mathbf{i}-\mathbf{k}$.
Answer: One answer: The cross product $\mathbf{v} \times \mathbf{w}=\mathbf{i}+6 \mathbf{j}+2 \mathbf{k}$ is perpendicular to \mathbf{v} and \mathbf{w}.

Cross products and areas

Theorem 3 (a) If the nonzero vectors \mathbf{v} and \mathbf{w} with their bases at the same point in $x y z$-space form two sides of a parallelogram, then

$$
\text { [The area of the parallelogram] }=|\mathbf{v} \times \mathbf{w}|
$$

(b) If the vectors \mathbf{v} and \mathbf{w} with their bases at the same point in $x y z$-space form two sides of a triangle, then
[The area of the triangle] $=\frac{1}{2}|\mathbf{v} \times \mathbf{w}|$.

Example $5 \quad$ Find the area of the triangle with vertices $P=(1,2,3), Q=(4,2,6)$ and $R=(5,3,7)$. Answer: $[$ Area of the triangle $]=\frac{3}{2} \sqrt{2}$

The scalar triple product

The number $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$ is called a SCALAR TRIPLE PRODUCT of the three vectors. ${ }^{\dagger}$ It can be calculated as a determinant:

Theorem 3 (The scalar triple product) For vectors $\mathbf{u}=\left\langle a_{1}, b_{1}, c_{1}\right\rangle$, $\mathbf{v}=\left\langle a_{2}, b_{2}, c_{2}\right\rangle$, and $\mathbf{w}=\left\langle a_{3}, b_{3}, c_{3}\right\rangle$

$$
\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right|
$$

where the rows of the determinant are the components of \mathbf{u}, \mathbf{v}, and \mathbf{w} in that order.

[^1]Example $6 \quad$ Calculate $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$ for $\mathbf{u}=\langle 3,3,-1\rangle, \mathbf{v}=\langle 4,6,5\rangle$, and $\mathbf{w}=\langle 2,2,-1\rangle$.
Answer: $\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})=-2$

Scalar triple products and volumes

If we position three vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} with their bases at the same point, then they form adjacent edges of a Parallelepiped, as in Figure 6, or adjacent edges of a TEtrahedron, as in Figure 7. The volumes of these solids can be calculated with the scalar triple product.

FIGURE 6

FIGURE 7

Theorem 5 (a) If three adjacent edges of a parallelepiped are formed by the the vectors \mathbf{u}, \mathbf{v}, and \mathbf{w}, then
[The volume of the parallelepiped] $=|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$.
(b) If the vectors \mathbf{u}, \mathbf{v}, and \mathbf{w} form adjacent sides of a tetrahedron, then
[The volume of the tetrahedron] $=\frac{1}{6}|\mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})|$.

Example $7 \quad$ What is the volume of the parallelepiped with vertex $P=(1,1,1)$ and adjacent vertices $Q=(4,4,0), R=(5,7,6)$, and $S=(3,3,0) ?$
Answer: [Volume of the parallelepiped] $=2$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: ${ }^{\dagger}$
Section 12.4: Examples 1-7

[^2]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 12.4 of Calculus, Early Transcendentals by Rogawski.

[^1]: ${ }^{\dagger} \mathbf{u} \cdot(\mathbf{v} \times \mathbf{w})$ is called a scalar triple product because it is a scalar (number) and to distinguish it from the vector triple product $\mathbf{u} \times(\mathbf{v} \times \mathbf{w})$.

[^2]: ${ }^{\dagger}$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

