Math 20C. Lecture Examples.

Sections 11.1 and 13.1. Parametric equations and vector-valued functions ${ }^{\dagger}$

Example 1 Draw the curve $C: x=x(t), y=y(t), 0 \leq t \leq 3$ in an $x y$-plane, where $x=x(t)$ and $y=y(t)$ are the piecewise-linear functions with graphs in Figures 1 and 2.

FIGURE 1

FIGURE 2

Answer: Use the values in the table below. - Figure A1

t	0	1	2	3
$x=x(t)$	10	10	30	10
$y=y(t)$	10	30	10	10

Figure A1

[^0]Example $2 \quad$ Sketch the curve $C: x=t^{3}-12 t, y=2 t^{2},-4 \leq t \leq 4$.
Answer: Draw $x=x(t)$ in a $t x$-plane and $y=y(t)$ in a $t y$-plane for $-4 \leq t \leq 4$ (Figures A2a and A2b). Use these graphs to draw $C: x=t^{3}-12 t, y=2 t^{2},-4 \leq t \leq 4$ in an $x y$-plane. - Figure A2c

t	-4	-2	0	2	4
$x=t^{3}-12 t$	-16	16	0	-16	16
$y=2 t^{2}$	32	8	0	8	32

Figure A2a
Figure A2a

$y(t)=2 t^{2}$
$-4 \leq t \leq 4$

Figure A2b
$\left\{\begin{array}{c}x=t^{3}-12 t \\ y=2 t^{2} \\ -4 \leq t \leq 4\end{array}\right.$

Figure A2c

Example 3 Draw the line with parametric equations $x=2+t, y=1+\frac{1}{2} t$.
Answer: Figure A3

Figure A3

Parametric equations of ellipses

The ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ with center at the origin, x-intercepts $x= \pm a$ and y-intercepts $y= \pm b$ in Figure 3 has the parametric equations,

$$
x=a \cos t, y=b \sin t, 0 \leq t \leq 2 \pi .
$$

FIGURE 3

Example 4 Draw the ellipse $C: x=2 \cos t, y=3 \sin t, 0 \leq t \leq 2 \pi$. Answer: Figure A4

Figure A4

Example $5 \quad$ When the circle of radius 1 in Figure 4 is rolled to the right along the x-axis, the point P that is initially at the origin generates the CYCloid in Figure 5. Give parametric equations of this curve.

FIGURE 4

FIGURE 5

Answer: $x=t-\sin t, y=1-\cos t$
Theorem 1 If a curve is given by $x=x(t), y=y(t)$ and $y^{\prime}(a) \neq 0$, then the slope of the tangent line to the curve at $t=a$ is

$$
\frac{d y}{d x}=\left.\frac{d y / d t}{d x / d t}\right|_{t=a}=\frac{y^{\prime}(a)}{x^{\prime}(a)}
$$

Example $6 \quad$ What is the slope of the tangent line at $t=3$ on the curve $x=t^{3}-12 t, y=2 t^{2}$ in Figure 6 ?

FIGURE 6

Answer: [Slope of the tangent line at $t=3$] $=\frac{4}{5}$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: ${ }^{\dagger}$
Section 13.1: Examples 1-5

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Sections 11.1 and 13.1 of Calculus, Early Transcendentals by Rogawski.

[^1]: \dagger The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

