Math 20C. Lecture Examples.

Sections 11.1 and 13.1. Parametric equations and vector-valued functions^{\dagger}

Example 1 Draw the curve $C: x = x(t), y = y(t), 0 \le t \le 3$ in an *xy*-plane, where x = x(t) and y = y(t) are the piecewise-linear functions with graphs in Figures 1 and 2.

Answer: Use the values in the table below. • Figure A1

t	0	1	2	3
x = x(t)	10	10	30	10
y = y(t)	10	30	10	10

Figure A1

 $^{^\}dagger {\rm Lecture}$ notes to accompany Sections 11.1 and 13.1 of Calculus, Early Transcendentals by Rogawski.

Math 20C. Lecture Examples. (7/25/08)

Sketch the curve C: $x = t^3 - 12t, y = 2t^2, -4 \le t \le 4$. Example 2

```
Answer: Draw x = x(t) in a tx-plane and y = y(t) in a ty-plane for -4 \le t \le 4 (Figures A2a and A2b). • Use these graphs to draw C: x = t^3 - 12t, y = 2t^2, -4 \le t \le 4 in an xy-plane. • Figure A2c
```


Figure A2a

Figure A2b

Figure A2c

Example 3 Draw the line with parametric equations $x = 2 + t, y = 1 + \frac{1}{2}t$. Answer: Figure A3

Figure A3

Sections 11.1 and 13.1, p. 3

Parametric equations of ellipses

The ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with center at the origin, *x*-intercepts $x = \pm a$ and *y*-intercepts $y = \pm b$ in Figure 3 has the parametric equations,

$$x = a\cos t, y = b\sin t, 0 \le t \le 2\pi.$$

FIGURE 3

Example 4 Draw the ellipse $C: x = 2 \cos t, y = 3 \sin t, 0 \le t \le 2\pi$. Answer: Figure A4

Figure A4

Example 5 When the circle of radius 1 in Figure 4 is rolled to the right along the x-axis, the point P that is initially at the origin generates the CYCLOID in Figure 5. Give parametric equations of this curve.

Answer: $x = t - \sin t$, $y = 1 - \cos t$

Theorem 1 If a curve is given by x = x(t), y = y(t) and $y'(a) \neq 0$, then the slope of the tangent line to the curve at t = a is

$$\frac{dy}{dx} = \frac{dy/dt}{dx/dt}\Big|_{t=a} = \frac{y'(a)}{x'(a)}.$$

Example 6 What is the slope of the tangent line at t = 3 on the curve $x = t^3 - 12t, y = 2t^2$ in Figure 6?

FIGURE 6

Answer: [Slope of the tangent line at t = 3] = $\frac{4}{5}$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/~ashenk/:[†] Section 13.1: Examples 1–5

 $^{^{\}dagger}$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.