Math 20C. Lecture Examples.

Sections 14.2 and 14.3. Limits and partial derivatives ${ }^{\dagger}$

Example $1 \quad$ What is $\lim _{(x, y) \rightarrow(3,2)}\left(x^{2}+y^{2}\right)$?
Answer: $\lim _{(x, y) \rightarrow(3,2)}\left(x^{2}+y^{2}\right)=13$
Example 2 Find the x - and y-derivatives of $f(x, y)=x^{3} y-x^{2} y^{5}+x$.
Answer: $\frac{\partial f}{\partial x}=3 x^{2} y-2 x y^{5}+1$ - $\frac{\partial f}{\partial y}=x^{3}-5 x^{2} y^{4}$
Example 3 What are $g_{x}(2,5)$ and $g_{y}(2,5)$ for $g(x, y)=x^{2} e^{3 y}$?
Answer: $g_{x}(2,5)=4 e^{15} \bullet g_{y}(2,5)=12 e^{15}$
Example 4 The volume of a right circular cylinder of radius r and height h is equal to the product $V(r, h)=\pi r^{2} h$ of its height h and the area πr^{2} of its base (Figure 1). What are (a) the rate of change of the volume with respect to the radius and (b) the rate of change of the volume with respect to the height and what are their geometric significance?
[Area of base] $=\pi r^{2}$
[Volume] $=\pi r^{2} h$
[Lateral surface area] $=2 \pi r h$
FIGURE 1

Answer: (a) $\frac{\partial V}{\partial r}=2 \pi r h$ is the area of the lateral surface (the sides) of the cylinder.
(b) $\frac{\partial V}{\partial h}=\pi r^{2}$ is the area of the base.

[^0]
Partial derivatives as slopes of tangent lines

When we hold y equal to a constant $y=y_{0}, z=f(x, y)$ becomes the function $z=f\left(x, y_{0}\right)$ of x, whose graph is the intersection of the surface $z=f(x, y)$ with the vertical plane $y=y_{0}$ (Figure 2). The x-derivative $f_{x}\left(x_{0}, y_{0}\right)$ is the slope in the positive x-direction of the tangent line to this curve at $x=x_{0}$.

FIGURE 2

FIGURE 3

Similarly, when we hold x equal to a constant $x_{0}, z=f(x, y)$ becomes the function $z=f\left(x_{0}, y\right)$ of y, whose graph is the intersection of the surface with the plane $x=x_{0}$ (Figure 3), and the y-derivative $f_{y}\left(x_{0}, y_{0}\right)$ is the slope in the positive y-direction of the tangent line to this curve at $y=y_{0}$.
Example $5 \quad$ (a) Is the x-derivative $f_{x}\left(x_{0}, y_{0}\right)$ in Figure 2 positive or negative? (b) The tangent line in Figure 3 is approximately parallel to the y-axis. What does this imply about the y-derivative $f_{y}\left(x_{0}, y_{0}\right)$?
Answer: (a) $f_{x}\left(x_{0}, y_{0}\right)$ is negative. (b) The tangent line is approximately horizontal so the derivative is approximately zero.
Example 6 The table below is from a study of the effect of exercise on the blood pressure of women. $P=P(t, E)$ is the average blood pressure, measured in millimeters of mercury (mm Hg), of women of age t years who are exercising at the rate of E watts. ${ }^{(1)}$ (One watt is 0.86 Calories per hour.) What is the approximate rate of change with respect to age of the average blood pressure of forty-five-year old women who are exercising at the rate of 100 watts?

$$
P=P(t, E) \text { (millimeters of mercury) }
$$

	$t=25$	$t=35$	$t=45$	$t=55$	$t=65$
$E=150$	178	180	197	209	195
$E=100$	163	165	181	199	200
$E=50$	145	149	167	177	181
$E=0$	122	125	132	140	158

[^1]Answer: $P_{t}(45,100) \approx 1.8$ millimeters of mercury per year (using a right difference quotient); or
$P_{t}(45,100) \approx 1.6$ millimeters of mercury per year (using a left difference quotient); or
$P_{t}(45,100) \approx 1.7$ millimeters of mercury per year (using a centered difference quotient)
Example 7 Use the table from Example 6 to fine the approximate rate of change with respect to exercise rate agepf the average blood pressure of fifty-five-year old women who are exercising at the rate of 75 watts.

$P=P(t, E)$ (millimeters of mercury)					
	$t=25$	$t=35$	$t=45$	$t=55$	$t=65$
$E=150$	178	180	197	209	195
$E=100$	163	165	181	199	200
$E=50$	145	149	167	177	181
$E=0$	122	125	132	140	158

Answer: $\left.\frac{\partial P}{\partial E}\right|_{(62,75)} \approx 0.44$ millimeters of mercury per watt

Estimating partial derivatives from level curves

Example 8 Figure 4 shows level curves of the temperature $T=T(t, h)$ (degrees Fahrenheit) as a function of time t (hours) and the depth h (centimeters) beneath the surface of the ground at O'Neil, Nebraska, from noon one day ($t=0$) until the next morning. ${ }^{(2)}$ (a) What was the approximate rate of change of the temperature with respect to time at 4:00 PM at a point 14 centimeters beneath the surface of the ground? (b) What was the approximate rate of change of the temperature with respect to depth at 4:00 PM at a point 14 centimeters beneath the surface of the ground?

FIGURE 4

[^2]Answer: (a) Figure A8 - $T_{t}(4,14) \approx 0.5$ degree per hour $(b) T_{h}(4,14) \approx \operatorname{degree}$ per centimeter
-1.7

Example $9 \quad$ What are the first-order partial derivatives of $f=x^{2} y^{3} z^{4}$?
Answer: $f_{x}=2 x y^{3} z^{4}$ - $f_{y}=3 x^{2} y^{2} z^{4}$ - $f_{z}=4 x^{2} y^{3} z^{3}$
Example 10 What are (a) $h_{y z}$ and (b) $h_{z y}$ for $h(x, y, z)=e^{x} \sin y \cos z$?

$$
\text { Answer: (a) } h_{y z}=-e^{x} \cos y \sin z \quad \text { (b) } h_{z y}=-e^{x} \cos y \sin z
$$

Example 10 Find the fourth derivative $\frac{\partial^{4}}{\partial w \partial x \partial y \partial z}\left(w^{2} x^{2} y^{2} z^{2}\right)$.

$$
\text { Answer: } \frac{\partial^{4}}{\partial w \partial x \partial y \partial z}\left(w^{2} x^{2} y^{2} z^{2}\right)=16 w x y z
$$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ ashenk/: \dagger
Section 14.3: Examples 1 through 5
Section 14.7: Examlple 2
Section 14.8: Example 2

[^0]: ${ }^{\dagger}$ Lecture notes to accompany Sections 14.2 and 14.3 of Calculus, Early Transcendentals by Rogawski.

[^1]: ${ }^{(1)}$ Data adapted from Geigy Scientific Tables, edited by C. Lentner, Vol. 5, Basel, Switzerland: CIBA-GEIGY Limited, 1990, p. 29.

[^2]: ${ }^{(2)}$ Data adapted from Fundamentals of Air Pollution by S. Williamson, Reading, MA: Addison Wesley, 1973.

