Math 20C. Lecture Examples.

Section 14.5, Part 1. Directional derivatives and gradient vectors in the plane ${ }^{\dagger}$

The x-derivative $f_{x}(a, b)$ is the derivative of f at (a, b) in the direction of the unit vector \mathbf{u}, and the y-derivative $f_{y}(a, b)$ is the derivative in the direction of the unit vector \mathbf{j}. To find the derivative of $z=f(x, y)$ at (a, b) in the direction of an arbitrary unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$, we introduce an t-axis, as in Figure 1, with its origin at (a, b), with its positive direction in the direction of \mathbf{u}, and with the scale used on the x - and y-axes. Then the point at t on the t-axis has $x y$-coordinates $x=a+t u_{1}, y=b+t u_{2}$, and the value of $z=f(x, y)$ at the point t on the t-axis is

$$
\begin{equation*}
F(t)=f\left(a+t u_{1}, b+t u_{2}\right) \tag{1}
\end{equation*}
$$

We call $z=F(t)$ the Cross section through (a, b) of $z=f(x, y)$ in the direction of \mathbf{u}. Its t-derivative at $t=0$ is the directional derivative of f at (a, b).

$\left\{\begin{array}{l}x=a+t u_{1} \\ y=b+t u_{2}\end{array}\right.$

FIGURE 1

Tangent line of slope

$$
F^{\prime}(0)=D_{\mathbf{u}} f(a, b)
$$

FIGURE 2

Definition 1 The directional derivative of $z=f(x, y)$ at (a, b) in the direction of the unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ is the derivative of the cross section function (1) at $t=0$:

$$
\begin{equation*}
D_{\mathbf{u}} f(a, b)=\left[\frac{d}{d t} f\left(a+t u_{1}, b+t u_{2}\right)\right]_{t=0} \tag{2}
\end{equation*}
$$

The directional derivative (2) is the rate of change of f at (a, b) in the direction of \mathbf{u}. Its geometric meaning is shown in Figure 2. We introduce a second vertical z-axis with its origin at (a, b) as in Figure 2. Then the graph of $z=F(t)$ is the intersection of the surface $z=f(x, y)$ with the $t z$-plane and the directional derivative of $z=f(x, y)$ is the slope of the tangent line to this curve in the positive t-direction at $t=0$.

[^0]The next theorem is used to calculate directional derivatives from partial derivatives.
Theorem $\mathbf{1}^{\dagger}$ For any unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$, the (directional) derivative of $z=f(x, y)$ at (a,b) in the direction of \mathbf{u} is

$$
\begin{equation*}
D_{\mathbf{u}} f\left(x_{0}, y_{0}\right)=f_{x}(a, b) u_{1}+f_{y}(a, b) u_{2} \tag{3}
\end{equation*}
$$

Remember formula (3) as the following statement: the directional derivative of $z=f(x, y)$ in the direction of \mathbf{u} equals the x-derivative of f multiplied by the x-component of \mathbf{u}, plus the y-derivative of f multiplied by the y-component of \mathbf{u}.
Example 1 Find the directional derivative of $f(x, y)=-4 x y-\frac{1}{4} x^{4}-\frac{1}{4} y^{4}$ at $(1,-1)$ in the direction of the unit vector $\mathbf{u}=\left\langle\frac{1}{2} \sqrt{2},-\frac{1}{2} \sqrt{2}\right\rangle$ (Figure 3).

Answer: $D_{\mathbf{u}} f(1,-1)=3 \sqrt{2}$
Figures 4 and 5 show the geometric interpretation of Example 1. The line in the $x y$-plane through $(1,-1)$ in the direction of the unit vector $\mathbf{u}=\left\langle\frac{1}{2} \sqrt{2},-\frac{1}{2} \sqrt{2}\right\rangle$ has the equations

$$
x=1+\frac{1}{2} \sqrt{2} t, y=-1-\frac{1}{2} \sqrt{2} t
$$

with distance t as parameter and $t=0$ at $(1,-1)$. The formula $f(x, y)=-4 x y-\frac{1}{4} x^{4}-\frac{1}{4} y^{4}$ shows that the cross section of $z=f(x, y)$ through $(1,1)$ in the direction of \mathbf{u} is

$$
\begin{aligned}
F(t) & =-4\left(1+\frac{1}{2} \sqrt{2} t\right)\left(-1-\frac{1}{2} \sqrt{2} t\right)-\frac{1}{4}\left(1+\frac{1}{2} \sqrt{2} t\right)^{4}-\frac{1}{4}\left(-1-\frac{1}{2} \sqrt{2} t\right)^{4} \\
& =4\left(1+\frac{1}{2} \sqrt{2} t\right)^{2}-\frac{1}{2}\left(1+\frac{1}{2} \sqrt{2} t\right)^{4}
\end{aligned}
$$

[^1]The graph of this function is shown in the $t z$-plane of Figure 4 . The slope of its tangent line at $t=0$ is the directional derivative from Example 1. The corresponding cross section of the surface $z=f(x, y)$ is the curve over the t-axis drawn with a heavy line in Figure 5, and the directional derivative is the slope of this curve in the positive t-direction at the point $P=(1,-1, f(1,-1))$ on the surface.

Cross section of $z=f(x, y)$ through $(1,-1)$ in the direction of $\mathbf{u}=\left\langle\frac{1}{2} \sqrt{2},-\frac{1}{2} \sqrt{2}\right\rangle$

FIGURE 4
$z=f(x, y)$
FIGURE 5
$z=f(x, y)$
FIGURE 5

Example 2 What is the derivative of $f(x, y)=x^{2} y^{5}$ at $P=(3,1)$ in the direction toward $Q=(4,-3)$?
Answer: $D_{\mathbf{u}} f(3,1)=-\frac{174}{\sqrt{17}}$
Example 3 What is the derivative of $h(x, y)=e^{x y}$ at $(2,3)$ in the direction at an angle of $\frac{2}{3} \pi$ radians from the positive x-direction?
Answer: Figure A3 • $\mathbf{u}=\left\langle-\frac{1}{2}, \frac{1}{2} \sqrt{3}\right\rangle \bullet D_{\mathbf{u}} h(2,3)=\left(-\frac{3}{2}+\sqrt{3}\right) e^{6}$

Figure A3

Example 4 Figure 6 shows level curves of the temperature $T=T(x, y)$ (degrees Celsius) of the surface of the ocean off the west coast of the United States at one time. ${ }^{(1)}$ (a) Express the rate of change toward the northeast of the temperature at point P in the drawing as a directional derivative, assuming that $P=(1240,1000)$. (b) Find the approximate value of this rate of change.

FIGURE 6

Answer: (a) The rate of change of the temperature toward the northeast at P is $D_{\mathbf{u}} T(1240,1000)$, where \mathbf{u} is the unit vector in the northeast direction.
(b) Figure A4. - One answer: $D_{\mathbf{u}} T(1240,1000) \approx-0.005$ degrees per mile

Figure A4

[^2]
The gradient vector

The formula

$$
D_{\mathbf{u}} f(a, b)=f_{x}(a, b) u_{1}+f_{y}(a, b) u_{2}
$$

from Theorem 1 for the derivative of f at (a, b) in the direction of the unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}\right\rangle$ has the form of the dot product of \mathbf{u} with the vector $\left\langle f_{x}, f_{y}\right\rangle$ at (a, b). This leads us to define the latter to be the GRADIENT VECTOR of f, which is denoted $\nabla f .{ }^{\dagger}$

Definition 2 The gradient vector of $f(x, y)$ at (a, b) is

$$
\begin{equation*}
\nabla f(a, b)=\left\langle f_{x}(a, b), f_{y}(a, b)\right\rangle \tag{4}
\end{equation*}
$$

The gradient vector (4) is drawn as an arrow with its base at (a, b). Because its length is a derivative (a rate of change) rather than a distance, its length can be measured with any convenient scale. The scales on the coordinate axes are used, however, whenever possible.
Example 5 Draw $\nabla f(1,1), \nabla f(-1,2)$, and $\nabla f(-2,-1)$ for $f(x, y)=x^{2} y$. Use the scale on the x - and y-axes to measure the lengths of the arrows.

$$
\text { Answer: } \nabla f(1,1)=\langle 2,1\rangle \bullet \nabla f(-1,2)=\langle-4,1\rangle \bullet \nabla f(-2,-1)=\langle 4,4\rangle \bullet \text { Figure A5 }
$$

Figure A5

With Definition 2, formula (3) for the directional derivative becomes

$$
D_{\mathbf{u}} f(a, b)=\nabla f(a, b) \cdot \mathbf{u}=|\nabla f(a, b)| \cos \theta
$$

where θ is an angle between \mathbf{u} and $\nabla f(a, b)$ (Figure 7). This gives the next theorem.

FIGURE 7

[^3]Theorem 2 Suppose that $\nabla f(a, b)$ is not the zero vector. Then (a) the maximum directional derivative of f at (a, b) is $|\nabla f(a, b)|$ and occurs for \mathbf{u} with the same direction as $\nabla f(a, b)$, (b) the minimum directional derivative of f at (a, b) is $-|\nabla f(a, b)|$ and occurs for \mathbf{u} with the opposite direction as $\nabla f(a, b)$, and (c) the directional derivative of f at (a, b) is zero for \mathbf{u} with either of the two directions perpendicular to $\nabla f(a, b)$.

Part (c) of this theorem implies that $\nabla f(a, b)$ is perpendicular to the level curve of f through the point (a, b).
Example 6
(a) What is the maximum directional derivative of $g(x, y)=y^{2} e^{2 x}$ at $(2,-1)$ and in the direction of what unit vector does it occur? (b) What is the minimum directional derivative of g at $(2,-1)$ and in the direction of what unit vector does it occur?
Answer: (a) The maximum directional derivative is $\sqrt{8} e^{4}$ and occurs in the direction of $\mathbf{u}=\frac{\langle 1,-1\rangle}{\sqrt{2}}$.
(b) The minimum directional derivative is $=-\sqrt{8} e^{4}$ and occurs in the direction of $\mathbf{u}=\frac{\langle-1,1\rangle}{\sqrt{2}}$.

Example $7 \quad$ Give the two unit vectors \mathbf{u} such that the function $z=g(x, y)$ of Example 6 has zero derivatives at $(2,-1)$ in the direction of \mathbf{u}.
Answer: The directional derivative is zero in the directions of $\mathbf{u}=\frac{\langle-1,-1\rangle}{\sqrt{2}}$ and $\mathbf{u}=\frac{\langle 1,1\rangle}{\sqrt{2}}$.
Example $8 \quad$ (a) Draw the gradient vector of $f(x, y)=x y$ at $(1,2)$ and the level curve of f through that point. (b) Draw $\nabla f(-3,1)$ and the level curve of f through $(-3,1)$.

Figure A8a

Figure A8b

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/~ashenk/: ${ }^{\dagger}$
Section 14.5: Examples 1 through 6

[^4]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 14.5, Part 1 of Calculus, Early Transcendentals by Rogawski.

[^1]: ${ }^{\dagger}$ We assume in this section that the functions involved have continuous first-order partial derivatives in open circles centered at all points (x, y) that are being considered.

[^2]: ${ }^{(1)}$ Data adapted from Zoogeography of the Sea by S. Elkman, London: Sidgwich and Jackson, 1953, p. 144.

[^3]: ${ }^{\dagger}$ The symbol ∇ is called "nabla" or "del."

[^4]: ${ }^{\dagger}$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

