Math 20C. Lecture Examples.

Section 14.5, Part 2. Directional derivatives and gradient vectors in space ${ }^{\dagger}$

The definitions and results in Part 1 of this section concerning gradient vectors and directional derivatives with two variables can be converted to the three-variable case by allowing for the extra variable in the formulas.

Definition 1 (a) The gradient vector of $w=f(x, y, z)$ at (a, b, c) is

$$
\begin{equation*}
\nabla f(a, b, c)=\left\langle f_{x}(a, b, c), f_{y}(a, b, c), f_{z}(a, b, c)\right\rangle \tag{1}
\end{equation*}
$$

(b) The directional derivative $D_{u} f(a, b, c)$ of $z=f(x, y, z)$ at (a, b, c) in the direction of the unit vector $\mathbf{u}=\left\langle u_{1}, u_{2}, u_{3}\right\rangle$ is the t-derivative of the cross section $w=f\left(a+t u_{1}, b+t u_{2}, b+t u_{3}\right)$ at $t=0$.

The directional derivative $D_{u} f(a, b, c)$ is the rate of change of f with respect to distance in the direction of the vector \mathbf{u}.

Theorem 1 (a) The directional derivative $D_{u} f(a, b, c)$ of $w=f(x, y, z)$ is equal to the dot product of the gradient of f at (a, b, c) with the unit vector \mathbf{u} :

$$
\begin{align*}
D_{u} f(a, b, c) & =\nabla f(a, b, c) \cdot \mathbf{u} \\
& =f_{x}(a, b, c) u_{1}+f_{y}(a, b, c) u_{2}+f_{z}(a, b, c) u_{3} \tag{2}
\end{align*}
$$

(b) If the gradient vector $\nabla f(a, b, c)$ is not zero, then the greatest directional derivative of f at (a, b, c) is $|\nabla f(a, b, c)|$ and is in the direction of $\nabla f(a, b, c)$; the least directional derivative at (a, b, c) is $-|\nabla f(a, b, c)|$ and is in the direction opposite $\nabla f(a, b, c)$; and the directional derivatives at (a, b, c) in the directions perpendicular to $\nabla f(a, b, c)$ are zero.

Example 1 (a) What is the gradient of $f(x, y, z)=x y z$ at $(1,2,3)$? (b) What is the directional derivative of f at $(1,2,3)$ in the direction toward $(2,3,4)$? (c) What is the greatest directional derivative of f at $(1,2,3)$?
Answer: (a) $\nabla f(1,2,3)=\langle 6,3,2\rangle$ (b) The directional derivative of f at $(1,2,3)$ in the direction toward $(2,3,4)$ is $\frac{18}{\sqrt{14}}$. (c) The greatest directional derivative of f at $(1,2,3)$ is 7 .

[^0]
Gradient vectors and level surfaces

Theorem 2 If $\nabla f(a, b, c)$ is not the zero vector, then it is perpendicular to the level surface of f through (a, b, c) and to the tangent plane at (a, b, c) to that level surface (Figure 1$)$. The tangent plane has the normal vector $\nabla f(a, b, c)$ and the equation

$$
\begin{equation*}
f_{x}(a, b, c)(x-a)+f_{y}(a, b, c)(y-b)+f_{z}(a, b, c)(z-c)=0 \tag{3}
\end{equation*}
$$

Example 2 Give an equation of the tangent plane at the point $(2,2,3)$ on the hyperboloid of two sheets $x^{2}+y^{2}-z^{2}=-1$
Answer: Tangent plane: $4(x-2)+4(y-2)-6(z-3)=0$ or $2 x+2 y-3 z=-1$

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: \dagger
Section 14.7: Examples 4, 5, and 6

[^1]
[^0]: ${ }^{\dagger}$ Lecture notes to accompany Section 14.5, Part 2 of Calculus, Early Transcendentals by Rogawski.

[^1]: ${ }^{\dagger}$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.

