(8/15/11)
Math 20C. Lecture Examples

Section 14.7, Part 2. Maxima and minima: The Second-Derivative Test

The second-degree Taylor polynomial approximation of y = f(x) at x = zg is

Ty(z) = f(zo) + f'(z0)(x — o) + 5 ' (z0) (z — z0)*.

This polynomial has the same value and the same first and second derivatives as y = f(z) at z¢ and, consequently,
is the second-degree polynomial that best approximates y = f(z) near zg.

If zg is a critical point of y = f(x), then f’(zg) = 0 and the Taylor polynomial is

Ty(z) = f(z0) + 5 (wo)(z — z0)°.

If f"(xq) is positive, then the graph of T is a parabola that opens upward, as in Figure 1, and f has a local
minimum at zg. If f/(x) is negative, then the graph of T3 is a parabola that opens downward, as in Figure 4, and
f has a local maximum at xzg.
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To study local maxima and minima in the case of two variables, we approximate functions z = f(z,y) by
their second-degree Taylor polynomials.

Definition 1  The second-degree Taylor approximation of z = f(z,y) at Po = (zo,yo) is

Ta(z,y) = f(Po) + fz(Po)(x — xo) + fy(Po)(y — o)

1
+ & fre(Po) (& — 20)* + fay(Po)(z — 20)(y — y0) + 5 fyy(Po)(y — y0)*. .

The Taylor polynomial (1) has the same value and the same first- and second-order derivatives as f at
Py = (z0,y0) and is the second-degree polynomial that best approximates f near that point.



Math 20C. Lecture Examples (8/15/11). Section 14.7, Part 2, p. 2

Example 1 Give the second-degree Taylor polynomial approximation of
SOLUTION: f(x,y)=1—-cosxcosy at x=0,y =0.
fz = %(1 —cosxcosy) =sinzcosy o fy = B_y(l —coszcosy) =coszsiny e
9 ,. . . .
foz = 8—(smxcosy) =coszcosy e fry= a—(smxcosy) = —ginzsiny e
€z Y

17} .
fyy = a—y(cosacsmy) =cosxcosy e
£(0,0) =1 —cos(0)cos(0) =0 e
12(0,0) = sin(0) cos(0) =0 e f,(0,0) = cos(0)sin(0) =0 e
faz(0,0) = cos(0) cos(0) =1 e fzy(0,0) = —sin(0)sin(0) =0 e fyy(0,0) = cos(0)cos(0) =1 e
Ty(z,y) = £(0,0) + £2(0,0) + £y (0,0)y + 3f22(0,0)2% + fuy(0,0)2y + 3 fyy(0,0)5”
Ty(z,y) = 32° + 397
The graph of f(z,y) = 1 — coszcosy from Example 1 is in Figure 3. The graph of its Taylor polynomial

approximation is the circular paraboloid z = T(x,y) shown in Figure 4. The function f has a local minimum at
x = 0,y = 0 because the Taylor polynomial has a global minimum there.

z=1—cosxzcosy z =Ta(z,y)
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This approach can be applied to any function. Suppose that (xg,yo) is a critical point of f. Then
faz(zo,y0) = 0 and fy(zo,yo) = 0 and the Taylor polynomial approximation of f at (zo, yo) is

To(z,y) = f(20,Y0) + 5 faa (20, Y0) (@ — 20)* + fay(z0,%0)(x — z0)(y — yo) + & fyy (0, y0) (¥ — yo)*. (2)

If the graph of T, is an elliptic paraboloid that opens upward as in Figure 5, then f has a local minimum at
T = xg,y = yo; if the graph of T5 is an elliptic paraboloid that opens downward as in Figure 6, then f has a local
maximum at x = xg,y = yo; and if the graph of T5 is a hyperbolic paraboloid as in Figure 7, then f has a SADDLE
POINT, which is neither a local maximum nor local minimum, at * = xg,y = yg. These geometric ideas are the basis
of the Second-Derivative Test with two variables.
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Example 2 Figures 8 and 9 show the graph of f = —x* - y4 —4xy + % and its level curves. Use
the Second-Derivative Test to classify its critical points.

FIGURE 8 FIGURE 9

SOLUTION:

0
fo= (-t =yt~ doy+ ) = —42® 4y = 4GP+ y) 0

0
fy = 3—y(—m4 —yt —dwy+ 5) = —4° —de = —4(° +x) o

3
z°+y=0
Critical points: 3 e y= —z3 7 = —y> e Substitute the first equation into the second:
Yy +x=0
(2% ez —2"=0 o 2(1—2% =0 e £ =0,1,—1 e Since y = —z>, the critical points are

Tr =
(0,0),(1,-1), and (—1,1). @
foo = i(—41;3 —dy) = —122°% o fuy = 3(—4363 —dy)=—d e fyy = 3(—4;,3 —dz) = —12°

ox Jy Jy
See the table below. e The function f has a saddle point at (0,0) because the discriminant AC' — B? is
negative there. e It has local maxima at (1, —1) and at (—1,1) because AC — B? is positive and A and

C are negative at those points.

Critical point A= frp = —1222 B = foy = —4 C = fyy = —12¢° AC — B?
(0,0) 0 —4 0 (0)(0) — (—4)? = —16
(1,—1) 12 —4 —12 —12(—12) — 42 =128
(—1,1) —12 —4 12 —12(—12) — 42 =128
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Example 3
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FIGURE 10

SOLUTION:

FIGURE 11
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Figures 10 and 11 show the graph of f = —2x3 — 3y4 —l—ﬁxy2 and its level curves.
Use the Second-Derivative Test to classify its critical points.

f=—2z3— 3y4 +62y% o fr = —6z+ 6y = —6(:02 — yz) o fy= —12y3 + 122y = —12y(y2 —z) e

2 92
Critical points: zw —y" =0

y(y* —2) =0
For y = 0, the first equation gives x = 0 and the critical point (0,0). e

e The second equation gives y =0 or z = yz.

For x = y27 the first equation is y4 — y2 =0or yQ(y2 —1)=0andgivesy =0,y =1,y = —1 with x = y2.

e Critical points: (0,0), (1,1), (1,=1) ® fogx = —12z e fuy =12y o fyy, = —36y> +12z e

See the table below.

A= faa B = fay C = fyy
Critical point =—12x =12y = —36y2 + 12z AC — B? Type
(0,0) 0 0 0 0 The test fails
(1,1) —12 12 —24 144 Local maximum
(1,-1) —12 —12 —24 144 Local maximum

Interactive Examples

Work the following Interactive Examples on Shenk’s web page, http//www.math.ucsd‘edu/~5Lshenk/:i

Section 15.2: Examples 1-3

fThe chapter and section numbers on Shenk’s web site refer to his calculus manuscript and not to the chapters and sections of the textbook

for the course.



