Math 20C. Lecture Examples

Section 14.7, Part 2. Maxima and minima: The Second-Derivative Test

The second-degree Taylor polynomial approximation of $y=f(x)$ at $x=x_{0}$ is

$$
T_{2}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2} .
$$

This polynomial has the same value and the same first and second derivatives as $y=f(x)$ at x_{0} and, consequently, is the second-degree polynomial that best approximates $y=f(x)$ near x_{0}.

If x_{0} is a critical point of $y=f(x)$, then $f^{\prime}\left(x_{0}\right)=0$ and the Taylor polynomial is

$$
T_{2}(x)=f\left(x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2} .
$$

If $f^{\prime \prime}\left(x_{0}\right)$ is positive, then the graph of T_{2} is a parabola that opens upward, as in Figure 1 , and f has a local minimum at x_{0}. If $f^{\prime \prime}\left(x_{0}\right)$ is negative, then the graph of T_{2} is a parabola that opens downward, as in Figure 4 , and f has a local maximum at x_{0}.

$$
y=T_{2}(x) \text { opens upward }
$$

Local minimum
FIGURE 1

$$
y=T_{2}(x) \text { opens downward }
$$

Local maximum
FIGURE 2

To study local maxima and minima in the case of two variables, we approximate functions $z=f(x, y)$ by their second-degree Taylor polynomials.

Definition 1 The second-degree Taylor approximation of $z=f(x, y)$ at $P_{0}=\left(x_{0}, y_{0}\right)$ is

$$
\begin{align*}
T_{2}(x, y)=f\left(P_{0}\right) & +f_{x}\left(P_{0}\right)\left(x-x_{0}\right)+f_{y}\left(P_{0}\right)\left(y-x_{0}\right) \\
& +\frac{1}{2} f_{x x}\left(P_{0}\right)\left(x-x_{0}\right)^{2}+f_{x y}\left(P_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right)+\frac{1}{2} f_{y y}\left(P_{0}\right)\left(y-y_{0}\right)^{2} . \tag{1}
\end{align*}
$$

The Taylor polynomial (1) has the same value and the same first- and second-order derivatives as f at $P_{0}=\left(x_{0}, y_{0}\right)$ and is the second-degree polynomial that best approximates f near that point.

Example 1 Give the second-degree Taylor polynomial approximation of SOLUTION: $f(x, y)=1-\cos x \cos y$ at $x=0, y=0$.

$$
\begin{aligned}
& f_{x}=\frac{\partial}{\partial x}(1-\cos x \cos y)=\sin x \cos y \bullet f_{y}=\frac{\partial}{\partial y}(1-\cos x \cos y)=\cos x \sin y \bullet \\
& f_{x x}=\frac{\partial}{\partial x}(\sin x \cos y)=\cos x \cos y \bullet f_{x y}=\frac{\partial}{\partial y}(\sin x \cos y)=-\sin x \sin y \bullet \\
& f_{y y}=\frac{\partial}{\partial y}(\cos x \sin y)=\cos x \cos y \bullet \\
& f(0,0)=1-\cos (0) \cos (0)=0 \bullet \\
& f_{x}(0,0)=\sin (0) \cos (0)=0 \bullet f_{y}(0,0)=\cos (0) \sin (0)=0 \bullet \\
& f_{x x}(0,0)=\cos (0) \cos (0)=1 \bullet f_{x y}(0,0)=-\sin (0) \sin (0)=0 \bullet f_{y y}(0,0)=\cos (0) \cos (0)=1 \bullet \\
& T_{2}(x, y)=f(0,0)+f_{x}(0,0) x+f_{y}(0,0) y+\frac{1}{2} f_{x x}(0,0) x^{2}+f_{x y}(0,0) x y+\frac{1}{2} f_{y y}(0,0) y^{2} \bullet \\
& T_{2}(x, y)=\frac{1}{2} x^{2}+\frac{1}{2} y^{2}
\end{aligned}
$$

The graph of $f(x, y)=1-\cos x \cos y$ from Example 1 is in Figure 3. The graph of its Taylor polynomial approximation is the circular paraboloid $z=T_{2}(x, y)$ shown in Figure 4. The function f has a local minimum at $x=0, y=0$ because the Taylor polynomial has a global minimum there.

FIGURE 3
FIGURE 4

This approach can be applied to any function. Suppose that $\left(x_{0}, y_{0}\right)$ is a critical point of f. Then $f_{x}\left(x_{0}, y_{0}\right)=0$ and $f_{y}\left(x_{0}, y_{0}\right)=0$ and the Taylor polynomial approximation of f at $\left(x_{0}, y_{0}\right)$ is

$$
\begin{equation*}
T_{2}(x, y)=f\left(x_{0}, y_{0}\right)+\frac{1}{2} f_{x x}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)^{2}+f_{x y}\left(x_{0}, y_{0}\right)\left(x-x_{0}\right)\left(y-y_{0}\right)+\frac{1}{2} f_{y y}\left(x_{0}, y_{0}\right)\left(y-y_{0}\right)^{2} . \tag{2}
\end{equation*}
$$

If the graph of T_{2} is an elliptic paraboloid that opens upward as in Figure 5, then f has a local minimum at $x=x_{0}, y=y_{0}$; if the graph of T_{2} is an elliptic paraboloid that opens downward as in Figure 6, then f has a local maximum at $x=x_{0}, y=y_{0}$; and if the graph of T_{2} is a hyperbolic paraboloid as in Figure 7, then f has a saddle POINT, which is neither a local maximum nor local minimum, at $x=x_{0}, y=y_{0}$. These geometric ideas are the basis of the Second-Derivative Test with two variables.

Local minimum FIGURE 5

Local maximum
FIGURE 6

Saddle point
FIGURE 7

Example $2 \quad$ Figures 8 and 9 show the graph of $f=-x^{4}-y^{4}-4 x y+\frac{1}{16}$ and its level curves. Use the Second-Derivative Test to classify its critical points.

FIGURE 8

FIGURE 9

SOLUTION:
$f_{x}=\frac{\partial}{\partial x}\left(-x^{4}-y^{4}-4 x y+\frac{1}{16}\right)=-4 x^{3}-4 y=-4\left(x^{3}+y\right) \bullet$
$f_{y}=\frac{\partial}{\partial y}\left(-x^{4}-y^{4}-4 x y+\frac{1}{16}\right)=-4 y^{3}-4 x=-4\left(y^{3}+x\right) \bullet$
Critical points: $\left\{\begin{array}{l}x^{3}+y=0 \\ y^{3}+x=0\end{array}\right.$ - $y=-x^{3}, x=-y^{3}$ - Substitute the first equation into the second: $x=-\left(-x^{3}\right)^{3} \bullet x-x^{9}=0 \bullet x\left(1-x^{8}\right)=0 \bullet x=0,1,-1$ - Since $y=-x^{3}$, the critical points are $(0,0),(1,-1)$, and $(-1,1) . \bullet$
$f_{x x}=\frac{\partial}{\partial x}\left(-4 x^{3}-4 y\right)=-12 x^{2} \bullet f_{x y}=\frac{\partial}{\partial y}\left(-4 x^{3}-4 y\right)=-4 \bullet f_{y y}=\frac{\partial}{\partial y}\left(-4 y^{3}-4 x\right)=-12 y^{2}$ •
See the table below. - The function f has a saddle point at $(0,0)$ because the discriminant $A C-B^{2}$ is negative there. - It has local maxima at $(1,-1)$ and at $(-1,1)$ because $A C-B^{2}$ is positive and A and C are negative at those points.

Critical point	$A=f_{x x}=-12 x^{2}$	$B=f_{x y}=-4$	$C=f_{y y}=-12 y^{2}$	$A C-B^{2}$
$(0,0)$	0	-4	0	$(0)(0)-(-4)^{2}=-16$
$(1,-1)$	-12	-4	-12	$-12(-12)-4^{2}=128$
$(-1,1)$	-12	-4	-12	$-12(-12)-4^{2}=128$

Example $3 \quad$ Figures 10 and 11 show the graph of $f=-2 x^{3}-3 y^{4}+6 x^{2}$ and its level curves. Use the Second-Derivative Test to classify its critical points.

FIGURE 10

FIGURE 11

SOLUTION:
$f=-2 x^{3}-3 y^{4}+6 x y^{2} \bullet f_{x}=-6 x^{2}+6 y^{2}=-6\left(x^{2}-y^{2}\right) \bullet f_{y}=-12 y^{3}+12 x y=-12 y\left(y^{2}-x\right) \bullet$
Critical points: $\left\{\begin{array}{c}x^{2}-y^{2}=0 \\ y\left(y^{2}-x\right)=0\end{array}\right.$ - The second equation gives $y=0$ or $x=y^{2}$.
For $y=0$, the first equation gives $x=0$ and the critical point $(0,0)$.
For $x=y^{2}$, the first equation is $y^{4}-y^{2}=0$ or $y^{2}\left(y^{2}-1\right)=0$ and gives $y=0, y=1, y=-1$ with $x=y^{2}$.

- Critical points: $(0,0),(1,1),(1,-1) \bullet f_{x x}=-12 x \bullet f_{x y}=12 y \bullet f_{y y}=-36 y^{2}+12 x$ •

See the table below.

	$A=f_{x x}$ $=-12 x$	$B=f_{x y}$ $=12 y$	$C=f_{y y}$ $=-36 y^{2}+12 x$	$A C-B^{2}$	Type
$(0,0)$	0	0	0	0	The test fails
$(1,1)$	-12	12	-24	144	Local maximum
$(1,-1)$	-12	-12	-24	144	Local maximum

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http//www.math.ucsd.edu/ a ashenk/: \ddagger
Section 15.2: Examples 1-3

[^0]
[^0]: ${ }^{\ddagger}$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook
 for the course.

