Math 20C. Lecture Examples

Section 14.7, Part 2. Maxima and minima: The Second-Derivative Test

The second-degree Taylor polynomial approximation of y = f(x) at $x = x_0$ is

$$T_2(x) = f(x_0) + f'(x_0)(x - x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2.$$

This polynomial has the same value and the same first and second derivatives as y = f(x) at x_0 and, consequently, is the second-degree polynomial that best approximates y = f(x) near x_0 .

If x_0 is a critical point of y = f(x), then $f'(x_0) = 0$ and the Taylor polynomial is

$$T_2(x) = f(x_0) + \frac{1}{2}f''(x_0)(x - x_0)^2.$$

If $f''(x_0)$ is positive, then the graph of T_2 is a parabola that opens upward, as in Figure 1, and f has a local minimum at x_0 . If $f''(x_0)$ is negative, then the graph of T_2 is a parabola that opens downward, as in Figure 4, and f has a local maximum at x_0 .

To study local maxima and minima in the case of two variables, we approximate functions z = f(x, y) by their second-degree Taylor polynomials.

Definition 1 The second-degree Taylor approximation of z = f(x, y) at $P_0 = (x_0, y_0)$ is

$$T_{2}(x,y) = f(P_{0}) + f_{x}(P_{0})(x-x_{0}) + f_{y}(P_{0})(y-x_{0}) + \frac{1}{2}f_{xx}(P_{0})(x-x_{0})^{2} + f_{xy}(P_{0})(x-x_{0})(y-y_{0}) + \frac{1}{2}f_{yy}(P_{0})(y-y_{0})^{2}.$$
(1)

The Taylor polynomial (1) has the same value and the same first- and second-order derivatives as f at $P_0 = (x_0, y_0)$ and is the second-degree polynomial that best approximates f near that point.

1

Math 20C. Lecture Examples (8/15/11).

$$\begin{aligned} f_x &= \frac{\partial}{\partial x} (1 - \cos x \cos y) = \sin x \cos y \quad \bullet \quad f_y = \frac{\partial}{\partial y} (1 - \cos x \cos y) = \cos x \sin y \quad \bullet \\ f_{xx} &= \frac{\partial}{\partial x} (\sin x \cos y) = \cos x \cos y \quad \bullet \quad f_{xy} = \frac{\partial}{\partial y} (\sin x \cos y) = -\sin x \sin y \quad \bullet \\ f_{yy} &= \frac{\partial}{\partial y} (\cos x \sin y) = \cos x \cos y \quad \bullet \\ f(0,0) &= 1 - \cos(0) \cos(0) = 0 \quad \bullet \\ f_x(0,0) &= \sin(0) \cos(0) = 0 \quad \bullet \quad f_y(0,0) = \cos(0) \sin(0) = 0 \quad \bullet \\ f_{xx}(0,0) &= \cos(0) \cos(0) = 1 \quad \bullet \quad f_{xy}(0,0) = -\sin(0) \sin(0) = 0 \quad \bullet \quad f_{yy}(0,0) = \cos(0) \cos(0) = 1 \quad \bullet \\ T_2(x,y) &= f(0,0) + f_x(0,0)x + f_y(0,0)y + \frac{1}{2}f_{xx}(0,0)x^2 + f_{xy}(0,0)xy + \frac{1}{2}f_{yy}(0,0)y^2 \quad \bullet \\ T_2(x,y) &= \frac{1}{2}x^2 + \frac{1}{2}y^2 \end{aligned}$$

The graph of $f(x, y) = 1 - \cos x \cos y$ from Example 1 is in Figure 3. The graph of its Taylor polynomial approximation is the circular paraboloid $z = T_2(x, y)$ shown in Figure 4. The function f has a local minimum at x = 0, y = 0 because the Taylor polynomial has a global minimum there.

This approach can be applied to any function. Suppose that (x_0, y_0) is a critical point of f. Then $f_x(x_0, y_0) = 0$ and $f_y(x_0, y_0) = 0$ and the Taylor polynomial approximation of f at (x_0, y_0) is

$$T_2(x,y) = f(x_0,y_0) + \frac{1}{2} f_{xx}(x_0,y_0)(x-x_0)^2 + f_{xy}(x_0,y_0)(x-x_0)(y-y_0) + \frac{1}{2} f_{yy}(x_0,y_0)(y-y_0)^2.$$
(2)

If the graph of T_2 is an elliptic paraboloid that opens upward as in Figure 5, then f has a local minimum at $x = x_0, y = y_0$; if the graph of T_2 is an elliptic paraboloid that opens downward as in Figure 6, then f has a local maximum at $x = x_0, y = y_0$; and if the graph of T_2 is a hyperbolic paraboloid as in Figure 7, then f has a SADDLE POINT, which is neither a local maximum nor local minimum, at $x = x_0, y = y_0$. These geometric ideas are the basis of the Second-Derivative Test with two variables.

Example 2 Figures 8 and 9 show the graph of $f = -x^4 - y^4 - 4xy + \frac{1}{16}$ and its level curves. Use the Second-Derivative Test to classify its critical points.

SOLUTION:

$$f_x = \frac{\partial}{\partial x}(-x^4 - y^4 - 4xy + \frac{1}{16}) = -4x^3 - 4y = -4(x^3 + y) \bullet$$

$$f_y = \frac{\partial}{\partial y}(-x^4 - y^4 - 4xy + \frac{1}{16}) = -4y^3 - 4x = -4(y^3 + x) \bullet$$
Critical points:
$$\begin{cases} x^3 + y = 0 \\ y^3 + x = 0 \end{cases} \bullet y = -x^3, x = -y^3 \bullet$$
 Substitute the first equation into the second:
$$x = -(-x^3)^3 \bullet x - x^9 = 0 \bullet x(1 - x^8) = 0 \bullet x = 0, 1, -1 \bullet$$
 Since $y = -x^3$, the critical points are $(0,0), (1,-1), \text{ and } (-1,1). \bullet$

$$f_{xx} = \frac{\partial}{\partial x}(-4x^3 - 4y) = -12x^2 \bullet f_{xy} = \frac{\partial}{\partial y}(-4x^3 - 4y) = -4 \bullet f_{yy} = \frac{\partial}{\partial y}(-4y^3 - 4x) = -12y^2 \bullet$$
See the table below. \bullet The function f has a saddle point at $(0,0)$ because the discriminant $AC - B^2$ is negative there. \bullet It has local maxima at $(1,-1)$ and at $(-1,1)$ because $AC - B^2$ is positive and A and C are negative at those points.

Critical point	$A = f_{xx} = -12x^2$	$B = f_{xy} = -4$	$C = f_{yy} = -12y^2$	$AC - B^2$
(0,0)	0	-4	0	$(0)(0) - (-4)^2 = -16$
(1, -1)	-12	-4	-12	$-12(-12) - 4^2 = 128$
(-1, 1)	-12	-4	-12	$-12(-12) - 4^2 = 128$

FIGURE 10

FIGURE 11

SOLUTION:

N: $f = -2x^{3} - 3y^{4} + 6xy^{2} \bullet f_{x} = -6x^{2} + 6y^{2} = -6(x^{2} - y^{2}) \bullet f_{y} = -12y^{3} + 12xy = -12y(y^{2} - x) \bullet$ Critical points: $\begin{cases} x^{2} - y^{2} = 0 \\ y(y^{2} - x) = 0. \end{cases}$ • The second equation gives y = 0 or $x = y^{2}$. For y = 0, the first equation gives x = 0 and the critical point (0, 0). \bullet For $x = y^{2}$, the first equation is $y^{4} - y^{2} = 0$ or $y^{2}(y^{2} - 1) = 0$ and gives y = 0, y = 1, y = -1 with $x = y^{2}$. • Critical points: $(0, 0), (1, 1), (1, -1) \bullet f_{xx} = -12x \bullet f_{xy} = 12y \bullet f_{yy} = -36y^{2} + 12x \bullet$ See the table below.

	$A = f_{xx}$	$B = f_{xy}$	$C = f_{yy}$		
Critical point	= -12x	= 12y	$= -36y^2 + 12x$	$AC - B^2$	Type
(0,0)	0	0	0	0	The test fails
(1, 1)	-12	12	-24	144	Local maximum
(1, -1)	-12	-12	-24	144	Local maximum

Interactive Examples

Work the following Interactive Examples on Shenk's web page, http://www.math.ucsd.edu/~ashenk/:[‡] Section 15.2: Examples 1–3

 $[\]ddagger$ The chapter and section numbers on Shenk's web site refer to his calculus manuscript and not to the chapters and sections of the textbook for the course.