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Math 20C. Lecture Examples

Section 14.7, Part 2. Maxima and minima: The Second-Derivative Test

The second-degree Taylor polynomial approximation of y = f(x) at x = x0 is

T2(x) = f(x0) + f
′(x0)(x − x0) + 1

2
f
′′(x0)(x − x0)

2
.

This polynomial has the same value and the same first and second derivatives as y = f(x) at x0 and, consequently,

is the second-degree polynomial that best approximates y = f(x) near x0.

If x0 is a critical point of y = f(x), then f ′(x0) = 0 and the Taylor polynomial is

T2(x) = f(x0) + 1

2
f
′′(x0)(x − x0)

2
.

If f ′′(x0) is positive, then the graph of T2 is a parabola that opens upward, as in Figure 1, and f has a local

minimum at x0. If f ′′(x0) is negative, then the graph of T2 is a parabola that opens downward, as in Figure 4, and

f has a local maximum at x0.
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To study local maxima and minima in the case of two variables, we approximate functions z = f(x, y) by

their second-degree Taylor polynomials.

Definition 1 The second-degree Taylor approximation of z = f(x, y) at P0 = (x0, y0) is

T2(x, y) = f(P0) + fx(P0)(x − x0) + fy(P0)(y − x0)

+ 1

2
fxx(P0)(x − x0)

2 + fxy(P0)(x − x0)(y − y0) + 1

2
fyy(P0)(y − y0)

2
.

(1)

The Taylor polynomial (1) has the same value and the same first- and second-order derivatives as f at

P0 = (x0, y0) and is the second-degree polynomial that best approximates f near that point.
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Example 1 Give the second-degree Taylor polynomial approximation of

f(x,y) = 1− cosxcosy at x = 0,y = 0.
SOLUTION:

fx =
∂

∂x
(1 − cos x cos y) = sin x cos y • fy =

∂

∂y
(1 − cos x cos y) = cos x sin y •

fxx =
∂

∂x
(sin x cos y) = cos x cos y • fxy =

∂

∂y
(sin x cos y) = − sin x sin y •

fyy =
∂

∂y
(cos x sin y) = cos x cos y •

f(0, 0) = 1 − cos(0) cos(0) = 0 •

fx(0, 0) = sin(0) cos(0) = 0 • fy(0, 0) = cos(0) sin(0) = 0 •

fxx(0, 0) = cos(0) cos(0) = 1 • fxy(0, 0) = − sin(0) sin(0) = 0 • fyy(0, 0) = cos(0) cos(0) = 1 •

T2(x, y) = f(0, 0) + fx(0, 0)x + fy(0, 0)y + 1

2
fxx(0, 0)x2 + fxy(0, 0)xy + 1

2
fyy(0, 0)y2

•

T2(x, y) = 1

2
x2 + 1

2
y2

The graph of f(x, y) = 1 − cos x cos y from Example 1 is in Figure 3. The graph of its Taylor polynomial

approximation is the circular paraboloid z = T2(x, y) shown in Figure 4. The function f has a local minimum at

x = 0, y = 0 because the Taylor polynomial has a global minimum there.
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This approach can be applied to any function. Suppose that (x0, y0) is a critical point of f . Then

fx(x0, y0) = 0 and fy(x0, y0) = 0 and the Taylor polynomial approximation of f at (x0, y0) is

T2(x, y) = f(x0, y0) + 1

2
fxx(x0, y0)(x − x0)

2 + fxy(x0, y0)(x − x0)(y − y0) + 1

2
fyy(x0, y0)(y − y0)

2
. (2)

If the graph of T2 is an elliptic paraboloid that opens upward as in Figure 5, then f has a local minimum at

x = x0, y = y0; if the graph of T2 is an elliptic paraboloid that opens downward as in Figure 6, then f has a local

maximum at x = x0, y = y0; and if the graph of T2 is a hyperbolic paraboloid as in Figure 7, then f has a saddle

point, which is neither a local maximum nor local minimum, at x = x0, y = y0. These geometric ideas are the basis

of the Second-Derivative Test with two variables.
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Example 2 Figures 8 and 9 show the graph of f = −x4
− y4

− 4xy + 1

16
and its level curves. Use

the Second-Derivative Test to classify its critical points.

FIGURE 8 FIGURE 9

SOLUTION:

fx =
∂

∂x
(−x4

− y4
− 4xy + 1

16
) = −4x3

− 4y = −4(x3 + y) •

fy =
∂

∂y
(−x4

− y4
− 4xy + 1

16
) = −4y3

− 4x = −4(y3 + x) •

Critical points:

{

x
3 + y = 0

y
3 + x = 0

• y = −x3, x = −y3
• Substitute the first equation into the second:

x = −(−x3)3 • x − x9 = 0 • x(1 − x8) = 0 • x = 0, 1,−1 • Since y = −x3, the critical points are

(0, 0), (1,−1), and (−1, 1). •

fxx =
∂

∂x
(−4x3

− 4y) = −12x2
• fxy =

∂

∂y
(−4x3

− 4y) = −4 • fyy =
∂

∂y
(−4y3

− 4x) = −12y2
•

See the table below. • The function f has a saddle point at (0, 0) because the discriminant AC − B2 is

negative there. • It has local maxima at (1,−1) and at (−1, 1) because AC − B2 is positive and A and

C are negative at those points.

Critical point A = fxx = −12x2 B = fxy = −4 C = fyy = −12y2 AC − B2

(0, 0) 0 −4 0 (0)(0) − (−4)2 = −16

(1,−1) −12 −4 −12 −12(−12) − 42 = 128

(−1, 1) −12 −4 −12 −12(−12) − 42 = 128
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Example 3 Figures 10 and 11 show the graph of f = −2x3
− 3y4 + 6xy2 and its level curves.

Use the Second-Derivative Test to classify its critical points.

FIGURE 10 FIGURE 11

SOLUTION:

f = −2x3
− 3y4 + 6xy2

• fx = −6x2 + 6y2 = −6(x2
− y2) • fy = −12y3 + 12xy = −12y(y2

− x) •

Critical points:

{

x2
− y2 = 0

y(y2
− x) = 0.

• The second equation gives y = 0 or x = y2.

For y = 0, the first equation gives x = 0 and the critical point (0, 0). •

For x = y2, the first equation is y4
− y2 = 0 or y2(y2

− 1) = 0 and gives y = 0, y = 1, y = −1 with x = y2.

• Critical points: (0, 0), (1, 1), (1,−1) • fxx = −12x • fxy = 12y • fyy = −36y2 + 12x •

See the table below.

A = fxx B = fxy C = fyy

Critical point = −12x = 12y = −36y2 + 12x AC − B2 Type

(0, 0) 0 0 0 0 The test fails

(1, 1) −12 12 −24 144 Local maximum

(1,−1) −12 −12 −24 144 Local maximum

Interactive Examples

Work the following Interactive Examples on Shenk’s web page, http//www.math.ucsd.edu/ ãshenk/:‡

Section 15.2: Examples 1–3

‡The chapter and section numbers on Shenk’s web site refer to his calculus manuscript and not to the chapters and sections of the textbook

for the course.


