
Quasiplanar graphs, string graphs, and
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Topological Graph G = (V ,E )

V = points in the plane.

E = curves connecting the corresponding points (vertices).
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Quasi-planar graphs

Theorem (Euler)

Every n-vertex topological graph with no crossing edges has at
most 3n − 6 edges.

A topological graph is called k-quasi-planar, if there are no k
pairwise crossing edges.

Conjecture

Every n-vertex k-quasi-planar graph has at most Ok(n) edges.
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Quasi-planar graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most Ok(n) edges.

Solved

k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007.

k = 4, Ackerman 2009.

Best known bounds

k ≥ 5, n( c log nlog k )O(log k), Fox-Pach 2014.

k ≥ 5, O(n log4k−16), Pach-Radoicic-Toth 2006.

Straight-line edges, O(n log n) Valtr 1997.

Andrew Suk (UC San Diego) Quasiplanar graphs, string graphs, and Erdős-Gallai



Quasi-planar graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most Ok(n) edges.

Solved

k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007.

k = 4, Ackerman 2009.

Best known bounds

k ≥ 5, n( c log nlog k )O(log k), Fox-Pach 2014.

k ≥ 5, O(n log4k−16), Pach-Radoicic-Toth 2006.

Straight-line edges, O(n log n) Valtr 1997.

Andrew Suk (UC San Diego) Quasiplanar graphs, string graphs, and Erdős-Gallai
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Natural approach: Intersection graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most Ok(n) edges.
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Natural approach: Intersection graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most Ok(n) edges.

Conjecture (Erdős)

Given a family of segments in the plane with no k pairwise crossing
members, can we properly color them with f (k) colors?
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Natural approach: Intersection graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most Ok(n) edges.

Conjecture (Erdős)

Every Kk -free intersection graph of segments in the plane has
chromatic number at most f (k).
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Natural approach: Intersection graphs

Conjecture

Every n-vertex k-quasi-planar graph has at most Ok(n) edges.

Conjecture (Erdős)

Every Kk -free string graph has chromatic number at most f (k).
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Natural approach: Intersection graphs

Conjecture (Erdős)
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Natural approach: Intersection graphs

Conjecture (Erdős)

Every Kk -free intersection graph of segments in the plane has
chromatic number at most f (k).

|E (G )|
f (k)
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Natural approach: Intersection graphs

Conjecture (Erdős)

Every Kk -free intersection graph of segments in the plane has
chromatic number at most f (k).

|E (G )|
f (k)

≤ 3(n − 6) ⇒ |E (G )| ≤ Ok(n)
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Natural approach: Intersection graphs

Conjecture (Erdős)

Every Kk -free intersection graph of segments in the plane has
chromatic number at most f (k).

Conjecture is False!
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Problems with this approach

Theorem (Pawlik, Kozik, Krawczyk, Larson, Micek, Trotter,
Walczak)

For every positive integer m, there is a K3-free intersection graph
of m segments in the plane whose chromatic number at least
Ω(log logm).

No large independent set

Theorem (Walczak)

For every positive integer m, there is a K3-free intersection graph
of m segments in the plane whose independence number is
O( m

log logm ).

Best hope for k-quasi-planar graphs: |E (G )| ≤ Ok(n log log n)
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Small hope: Erdős-Gallai, Erdős-Rogers type results

Conjecture

Every n-vertex k-quasi-planar graph has at most Ok(n) edges.

Solved

k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007
(Agarwal-Aronov-Pach-Pollack-Sharir 1997).

k = 4, Ackerman 2009.

Problem. Given a K5-free intersection graph of m segments in the
plane, is there an induced K4-free subgraph on Ω(m) vertices?

|E (G )| = O(n).
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Small hope: Erdős-Gallai, Erdős-Rogers type results

Problem

Given a Kk -free intersection graph of m segments in the plane, is
there an induced Kk−1-free subgraph on Ω(m) vertices?

Note true for k = 3, but Open for k > 3.

Theorem (Walczak)

For every positive integer m, there is a K3-free intersection graph
of m segments in the plane whose independence number is
O( m

log logm ).

Does not generalize to large cliques
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New results on string graphs

String graph: Intersection graph of curves in the plane.

Theorem (Tomon 2022)

Every n-vertex string graph contains a clique or independent set of
size nϵ.

Erdős-Gallai, Erdős-Rogers type result

Theorem (Fox-Pach-S. 2022)

For s > q ≥ 2, every K2s -free string graph on m vertices has a

K2q -free induced subgraph on m
(

cs
logm

)2s−2q
vertices
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New results on string graphs

String graph: Intersection graph of curves in the plane.

Theorem (Tomon 2022)

Every n-vertex string graph contains a clique or independent set of
size nϵ.
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Application: Back to k-quasi-planar graphs

Erdős-Gallai, Erdős-Rogers type result

Theorem (Fox-Pach-S. 2022)

For s > q ≥ 2, every K2s -free string graph on m vertices has a

K2q -free induced subgraph on m
(

cs
logm

)2s−2q
vertices

Theorem (Fox-Pach-S. 2022)

For s ≥ 3, every 2s -quasi-planar graph on n vertices has at most
csn (log n)

2s−4 edges.

Fox-Pach 2014: n (log n)O(s), O(s) ≈ 50s.
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Application: Back to k-quasi-planar graphs

Erdős-Gallai, Erdős-Rogers type result

Theorem (Fox-Pach-S. 2022)

For s > q ≥ 2, every K2s -free string graph on m vertices has a

K2q -free induced subgraph on m
(

cs
logm

)2s−2q
vertices

Theorem (Fox-Pach-S. 2022)

Every 8-quasi-planar graph on n vertices has at most O(n log2 n)
edges.

Pach-Radoicic-Toth 2006, Ackerman 2009: O(n log16 n).
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Sketch proof

Theorem (Fox-Pach-S. 2022)

For s > q ≥ 2, every K2s -free string graph on m vertices has a

K2q -free induced subgraph on m
(

cs
logm

)2s−2q
vertices

Key ingredient: Separator theorem
G = (V ,E ), V = V0 ∪ V1 ∪ V2, V0 separator, |V1|, |V2| < 2

3 |V |.

G = VV1
0

2
V
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Sketch proof

Theorem (Fox-Pach-S. 2022)

For s > q ≥ 2, every K2s -free string graph on m vertices has a

K2q -free induced subgraph on m
(

cs
logm

)2s−2q
vertices

Key ingredient: Separator theorem
G = (V ,E ), V = V0 ∪ V1 ∪ V2, V0 separator, |V1|, |V2| < 2

3 |V |.

G = VV1
0

2
V

Andrew Suk (UC San Diego) Quasiplanar graphs, string graphs, and Erdős-Gallai



Sketch proof

Key ingredient: Separator theorem
G = (V ,E ), V = V0 ∪ V1 ∪ V2, V0 separator, |V1|, |V2| < 2

3 |V |.

G = VV1
0

2
V

Theorem (Lee 2016)

Every string graph on m vertices and e edges has a separator of
size O(

√
e).

Matousek 2013: O(
√
e log e)

Andrew Suk (UC San Diego) Quasiplanar graphs, string graphs, and Erdős-Gallai



Sketch proof

Key ingredient: Extending a result of Tomon

Lemma

Let G = (V ,E ) be a string graph with m vertices and at least αm2

edges. Then there are disjoint subsets V1 ∪ · · · ∪ Vt ⊂ V , t ≥ 2,
such that

1 Vi is complete to Vj , and

2 |Vi | ≥ cαm
t2

G =
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Sketch proof

Theorem (Fox-Pach-S. 2022)

For s > q ≥ 2, every K2s -free string graph on m vertices has a

K2q -free induced subgraph on m
(

cs
logm

)2s−2q
vertices

Proof. Induction on s and m. G =string graph of m curves.

Case 1. G has less than ε m2

log2 m
edges. Separator of size c

√
ε m
logm .

G = VV1
0

2
V
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Sketch proof

Case 1. Separator of size c
√
ε m
logm .

G = VV1
0

2
V

|V1|
(

cs
log |V1|

)2s−2q

+ |V2|
(

cs
log |V2|

)2s−2q
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Sketch proof

Case 1. Separator of size c
√
ε m
logm .

G = VV1
0

2
V

|V1|
(

cs
log |V1|

)2s−2q

+ |V2|
(

cs
log |V2|

)2s−2q
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Sketch proof

Case 1. Separator of size c
√
ε m
logm .

|V1|
(

cs
log |V1|

)2s−2q

+ |V2|
(

cs
log |V2|

)2s−2q

≥ (|V1|+ |V2|)
(

cs
log 2m/3

)2s−2q

≥ m
(1− c

√
ε

logm )(cs)
2s−2q

(logm − log(3/2))2s−2q

= m

(
cs

logm

)2s−2q 1− c
√
ε

logm(
1− log(3/2)

logm

)2s−2q
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Sketch proof
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Sketch proof

Case 2. G has at least ε m2

log2 m
edges. t = 2p

V1, . . . ,Vt ⊂ V , Vi is complete to Vj . |Vi | ≥ cε m
t2 log2 m

V
4

G =

V1

V2

V
3

One part Vi is K2s−p -free.
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Sketch proof

One part Vi is K2s−p -free.

Case 2.a. If 2s−p ≤ 2q, then Vi is K2q -free. t = 2p ≥ 2s−q

|Vi | ≥ cε
m

t2 log2m

≥ cε
m

22 log2m
≥ m

(
cs

logm

)2s−2q
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Sketch proof

One part Vi is K2s−p -free.

Case 2.a. If 2s−p ≤ 2q, then Vi is K2q -free. t = 2p ≥ 2s−q

|Vi | ≥ cε
m

t2 log2m

≥ cε
m

22 log2m
≥ m
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)2s−2q

Andrew Suk (UC San Diego) Quasiplanar graphs, string graphs, and Erdős-Gallai



Sketch proof

One part Vi is K2s−p -free.

Case 2.b. If 2s−p > 2q, then t ≤ 2s−q.

|Vi | ≥ cε
m

t2 log2m

Apply induction on Vi to find a K2q -free subset

|Vi |
(

cs−p

log |Vi |

)2(s−p)−2q

≥ cε
m

t2 log2m

(
cs−p

logm

)2(s−p)−2q

≥ m

(
cs

logm

)2s−2q

□
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Concluding remarks

Erdős-Gallai, Erdős-Rogers type problems

Problem. Given a Kk -free intersection graph of m segments in the
plane, is there an induced Kk−1-free subgraph on Ω(m) vertices?
False for k = 3, but open for k > 3.

Problem. Given a Kk -free intersection graph of chords of a
circle, is there an induced Kk−1-free subgraph on Ω(m) vertices?
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Thank you!
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