Problem 1. Recall the simplicial partition theorem: For any \(n \)-element point set \(P \subset \mathbb{R}^2 \) and a parameter \(r : 1 < r < n \), there is a partition \(P = P_1 \cup \cdots \cup P_t \), such that

1. \(P_i \subset \sigma_i \), where \(\sigma_i \) is a relatively open simplex,
2. \(t = O(r) \),
3. \(\frac{n}{r} \leq |P_i| \leq \frac{2n}{r} \) for all \(i \), and
4. any line \(\ell \) in the plane crosses at most \(O(\sqrt{r}) \) \(\sigma_i \)'s. Here, \(\ell \) crosses a \(\sigma_i \) if \(\ell \cap \sigma_i \neq \emptyset \), and \(\sigma_i \not\subset \ell \).

Use the simplicial partition theorem to prove the Szemerédi-Trotter theorem.

Problem 2. (a) Let \(P \) be an \(n \)-element point set in the plane and let \(k < \sqrt{n} \) be an integer parameter. Prove at most \(O(n^2/k) \) pairs of points of \(P \) lie on lines containing at least \(k \) points and at most \(\sqrt{n} \) points of \(P \).

(b) For \(K > \sqrt{n} \), prove that the number of pairs of points in \(P \) lying on lines with at least \(\sqrt{n} \) and at most \(K \) points is \(O(Kn) \).

(c) Prove that there is an absolute constant \(c > 0 \) such that for any \(n \)-element point set \(P \) in the plane, at least \(cn^2 \) distinct lines are determined by \(P \) or there is a line containing at least \(cn \) points of \(P \).

Problem 3. Let \(q \geq 2 \) be an integer and let \(K = mq + 2 \) for integer \(m \geq 1 \). Prove that every sufficiently large set \(P \subset \mathbb{R}^2 \) in general position contains a \(k \)-point convex subset \(Y \) such that the number of points of \(P \) in the interior of \(\text{conv}(Y) \) is divisible by \(q \). Hint: Use Ramsey’s theorem.

Problem 4. Let \(G \) be the family of graphs such that \(G \in \mathcal{G} \) if and only if \(G \) is the intersection of a family of axis-parallel rectangular frames in the plane. Prove that \(\mathcal{G} \) is not chi-bounded.

Problem 5. Prove using pigeonhole that the Ramsey number \(b(n,n) \leq 4^n n \). Partial credit will be given for proofs using Kovari-Sos-Turan.