A Turán-Type Theorem on Chords of a Convex Polygon

Vasilis Capoyleas*
Courant Institute, New York University, 251 Mercer Street, New York, New York 10012

AND

JÁNOS $\mathbf{P A C H}^{\dagger}{ }^{\dagger} \ddagger$
Mathematical Institute of the Hungarian Academy of Sciences, 1364 Budapest Pf. 127, Hungary and Courant Institute, New York University, 251 Mercer Street, New York, New York 10012
Communicated by the Managing Editors
Received May 3, 1990

Abstract

The maximum number of straight line segments connecting n points in convex position in the plane, so that no $k+1$ of them are pairwise crossing is $\binom{n}{2}$ if $n \leqslant 2 k+1$ and $2 k n-\binom{2 k+1}{2}$ if $n \geqslant 2 k+1$. © 1992 Academic Press, Inc.

1. Introduction

One of the classical results in graph theory is Turán's theorem (see [T, B]), according to which the maximum number of edges of a graph with n vertices containing no complete subgraph on $k+1$ vertices is $\frac{1}{2}((k-1) / k)\left(n^{2}-r^{2}\right)+\binom{r}{2}$, where r is the remainder of n upon division by k.

As far as we know, Paul Erdős was the first to suggest that similar questions can be raised for geometric graphs, i.e., for graphs whose vertices are embedded in the plane and whose edges are straight line segments. In particular, he asked the following question. What is the maximum number of

[^0]edges of a geometric graph with n vertices in general position, if it does not contain $k+1$ pairwise disjoint edges? For $k=1$ this maximum is equal to n, as was proved by Erika Pannwitz and H. Hopf (sce [E]) and by Yaakov S. Kupitz [K1]. For $k=2$, Noga Alon and Paul Erdős established the upper bound $6(n-1)$, which has been recently improved by Paul M. O'Donnel and Micha A. Perles [OP] to about 3.6n. The lower bound $\frac{5}{2}(n-1)$ is due to Perles. The case $k>2$ is completely open.

Of course, the same question can be asked for geometric graphs whose n vertices form a convex polygon. As Kupitz observed, if such a graph does not contain $k+1$ pairwise disjoint edges, then it cannot have more than $n k$ edges, and this bound is tight.

In this note we consider the "dual" problem. What is the maximum number of edges of a geometric graph whose n vertices are in convex position and which does not contain $k+1$ pairwise crossing edges? We have the following result:

Theorem. Let $f_{k}(n)$ denote the maximum number of straight line segments connecting n points in convex position in the plane so that no $k+1$ of them are pairwise crossing. Then

$$
f_{k}(n)= \begin{cases}\binom{n}{2} & \text { if } n \leqslant 2 k+1 \\ 2 k n-\binom{2 k+1}{2} & \text { if } n \geqslant 2 k+1\end{cases}
$$

This question was raised by Bernd Gärtner. The above theorem was conjectured by Micha A. Perles, and for $k=2$ it was also proved independently by Imre Ruzsa. The weaker bound $f_{k}(n)<k^{3} 2^{k} n$ follows from a theorem of András Gyárfás [Gy], which estimates the chromatic number of the intersection graph associated with a system of chords of a convex n-gon. There are no nontrivial results concerning this problem if we drop the condition that the points are in convex position.

Many related problems and results on geometric graphs can be found in [K2, GyL, Tu, MP].

2. Proof of the Theorem

Let $k \geqslant 1$ be fixed. For $n \leqslant 2 k+1$ the statement is trivial. Assume that we have already proved it for every natural number smaller than n, and consider a graph G consisting of a maximum number $\left(f_{k}(n)\right)$ of straight line segments connecting the vertices of a convex n-gon such that no $k+1$ cross each other.

Claim 1. If two vertices are separated by fewer than k points along the boundary of our convex n-gon, then they are connected by an edge of G.

If there is no edge $a b$ whose endpoints are separated by at least k vertices along (both arcs of) the boundary of the n-gon, then the number of edges $\mathrm{e}(G) \leqslant k n$. So assume that there is such an edge $a b$, and let $p_{1}, p_{2}, \ldots, p_{n_{1}}$; $q_{1}, q_{2}, \ldots, q_{n_{2}}$ denote the vertices of the polygon on the right-hand side and on the left-hand side of $a b$, respectively, listed in clockwise order. (See Fig. 1.)

Obviously, $n_{1} \geqslant k, n_{2} \geqslant k$.
We define a partial order " \prec " on the set of all edges of G that cross $a b$, as follows. Two edges $q_{i} p_{j}$ and $q_{i^{\prime}} p_{j^{\prime}}$ are comparable if and only if they cross each other, and

$$
q_{i} p_{j}<q_{i^{\prime}} p_{j^{\prime}} \Leftrightarrow i<i^{\prime} \text { and } j<j^{\prime} .
$$

This is clearly a transitive relation.
We say that the minimal elements in this partial order have rank 1. In general, we call the minimal elements of the partial order obtained by the deletion of all elements of rank smaller than r, edges of rank r. In other words, $\operatorname{rank}\left(q_{i} p_{j}\right)$ is defined as the largest integer r such that there is a sequence of edges

$$
q_{i_{1}} p_{j_{1}} \prec q_{i_{2}} p_{j_{2}} \prec \cdots \prec q_{i_{r}} p_{j_{r}}=q_{i} p_{j} .
$$

In particular, it follows that

1. no two edges of the same rank cross each other,
2. the rank of every edge is at most $k-1$ (otherwise, $q_{i_{1}} p_{j_{1}}, \ldots, q_{i_{k}} p_{j_{k}}$, together with $a b$ would form a system of $k+1$ pairwise crossing edges).

Figure 1

Let us define a convex geometric graph G_{1} with $n_{2}+k+1$ vertices $\left\{a, p_{1}^{*}, p_{2}^{*}, \ldots, p_{k-1}^{*}, b, q_{1}, q_{2}, \ldots, q_{n_{2}}\right\}$ (in clockwise order), as follows.

Let G_{1} be the same as G, when restricted to $\left\{\mathrm{a}, b, q_{1}, q_{2}, \ldots, q_{n_{2}}\right\}$. Let $q_{i} p_{r}^{*}$ be in $E\left(G_{1}\right)$ if and only if there is an edge $q_{i} p_{j} \in E(G)$ whose rank is r. (Note that this edge is not necessarily uniquely determined.) Finally, let $\left\{a, p_{1}^{*}, p_{2}^{*}, \ldots, p_{k-1}^{*}, b\right\}$ induce a subgraph in G_{1} consisting of the single edge $a b$.

Claim 2. $\quad G_{1}$ does not have $k+1$ pairwise crossing edges.
Proof. It is sufficient to show that if there are t pairwise crossing edges $q_{i_{1}} p_{r_{1}}^{*}, q_{i_{2}} p_{r_{2}}^{*}, \ldots, q_{i_{t}} p_{r_{t}}^{*}$ in $G_{1}, i_{1}<i_{2}<\cdots<i_{t}, r_{1}<r_{2}<\cdots<r_{t}$, then one can find t pairwise crossing edges in G, all of which cross $a b$ and whose left endpoints are in the interval $\left\{q_{i}: i_{1} \leqslant i \leqslant i_{t}\right\}$.

Pick t edges $q_{i_{1}} p_{j_{1}}, q_{i_{2}} p_{j_{2}}, \ldots, q_{i_{t}} p_{j_{t}} \in E(G)$ with $\operatorname{rank}\left(q_{i_{1}} p_{j_{1}}\right)=r_{1}$, $\operatorname{rank}\left(q_{i_{2}} p_{j_{2}}\right)=r_{2}, \ldots, \operatorname{rank}\left(q_{i_{1}} p_{j_{t}}\right)=r_{t}$.

We shall produce a sequence $q_{u_{\mu}} p_{v_{\mu}}(\mu=1, \ldots, t)$ of pairwise crossing edges of G, such that:

1. $\operatorname{rank}\left(q_{u_{\mu}} p_{v_{\mu}}\right)=r_{\mu}$
2. $u_{\mu} \geqslant i_{\mu}$ for $\mu=1, \ldots, t$.

We proceed by reverse induction on μ. First define $q_{u_{t}} p_{v_{t}}=q_{i_{t}} p_{j_{t}}$. Assume we have already chosen $q_{u_{\mu}} p_{v_{\mu}}$ for $\mu=t, t-1, \ldots, s, s>1$, so as to satisfy the requirements above. There is an edge $q_{u} p_{v}$ of rank r_{s-1}, that crosses $q_{u_{s}} p_{v_{s}}$. If $u \geqslant i_{s-1}$, choose this edge to be $q_{u_{s-1}} p_{v_{s-1}}$, and we are done. If not, then $q_{u} p_{v}$ lies "below" $q_{i_{s-1}} p_{j_{s-1}}$ (see Fig. 2), since two edges of the same rank do

Figure 2
not cross. It follows that $q_{i_{s-1}} p_{j_{s-1}}$ must cross $q_{u_{s}} p_{v_{s}}$, and hence all the edges $q_{u_{\mu}} p_{v_{\mu}}, s \leqslant \mu \leqslant t$. In this case choose $q_{i_{s-1}} p_{j_{s-1}}$ to be $q_{u_{s-1}} p_{v_{s-1}}$.

Claim 3. The number of edges of $G_{1}, e\left(G_{1}\right) \leqslant f_{k}\left(n_{2}+k+1\right)-k^{2}+k$.
Proof. It is sufficient to show that we can add $k^{2}-k$ edges to G_{1} without creating $k+1$ pairwise intersecting edges. In view of Claim 1, all edges of G_{1} whose endpoints are separated by fewer than k points and which are not in G_{1}, can be added to it.

Observe that, for every edge $q_{i} p_{j} \in E(G), 1 \leqslant i \leqslant k-1$,

$$
\operatorname{rank}\left(q_{i} p_{j}\right) \leqslant i
$$

holds. This yields that

$$
q_{i} p_{r}^{*} \notin E\left(G_{1}\right) \text { whenever } r>i .
$$

Furthermore, all edges within $\left\{a, p_{1}^{*}, p_{2}^{*}, \ldots, p_{k-1}^{*}, b\right\}$ except $a b$ are missing from G_{1}. Hence, at least

$$
\sum_{i=1}^{k-1}(k-i-1)+\binom{k+1}{2}-1=k^{2}-k
$$

edges can be added to G_{1} without creating $k+1$ pairwise crossing edges.

Similarly, we can define a graph G_{2} with $n_{1}+k+1$ vertices $\left\{a, p_{1}, p_{2}, \ldots, p_{n_{1}}, q_{1}^{*}, q_{2}^{*}, \ldots, q_{k-1}^{*}\right\}$, by connecting q_{r}^{*} and p_{j} by an edge of G_{2} if and only if there exists an edge $q_{i} p_{j} \in E(G)$ with $\operatorname{rank}\left(q_{i} p_{j}\right)=r$, and letting $\left\{a, p_{1}, p_{2}, \ldots, p_{n_{1}}, b\right\}$ induce the same subgraph in G_{2} as in G. Just like before, $e\left(G_{2}\right) \leqslant f_{k}\left(n_{1}+k+1\right)-k^{2}+k$.

Let $\operatorname{deg}_{G_{1}}\left(p_{r}^{*}\right)$ (and $\left.\operatorname{deg}_{G_{2}}\left(q_{r}^{*}\right)\right)$ be the number of points in G_{1} (resp. G_{2}) adjacent to p_{r}^{*} (resp. q_{r}^{*}).

Claim 4. $\operatorname{deg}_{G_{1}}\left(p_{r}^{*}\right)+\operatorname{deg}_{G_{2}}\left(q_{r}^{*}\right)-1$ is at least as large as e_{r}, the number of edges of G having rank $r(1 \leqslant r \leqslant k-1)$.

Proof. This follows immediately from the fact that the edges of rank r form a forest on $\operatorname{deg}_{G_{1}}\left(p_{r}^{*}\right)+\operatorname{deg}_{G_{2}}\left(q_{r}^{*}\right)$ vertices.

Since $a b \in E\left(G_{1}\right) \cap E\left(G_{2}\right)$, we obtain by Claim 4

$$
\begin{aligned}
e(G) & =e\left(G_{1}\right)+e\left(G_{2}\right)-1-\sum_{r=1}^{k-1}\left\{\operatorname{deg}_{G_{1}}\left(p_{r}^{*}\right)+\operatorname{deg}_{G_{2}}\left(q_{r}^{*}\right)-e_{r}\right\} \\
& \leqslant e\left(G_{1}\right)+e\left(G_{2}\right)-k
\end{aligned}
$$

This, combined with Claim 3, implies that

$$
e(G) \leqslant f_{k}\left(n_{1}+k+1\right)+f_{k}\left(n_{2}+k+1\right)-2 k^{2}+k
$$

According to our assumptions, $n_{1}+n_{2}+2=n, n_{1} \geqslant k, n_{2} \geqslant k$. Therefore,

$$
2 k+1 \leqslant n_{i}+k+1<n \quad(i=1,2),
$$

and we can apply the induction hypothesis to obtain

$$
\begin{aligned}
e(G) & \leqslant 2 k\left(n_{1}+k+1\right)+2 k\left(n_{2}+k+1\right)-2\binom{2 k+1}{2}-2 k^{2}+k \\
& =2 k\left(n_{1}+n_{2}+2\right)-2 k^{2}-k \\
& =2 k n-\binom{2 k+1}{2}
\end{aligned}
$$

as desired.
This estimate is tight, as is shown by the following construction: Let $p_{1}, p_{2}, \ldots, p_{n}$ be the vertices of a convex n-gon in clockwise order, and let p_{i} and $p_{j}(i<j)$ be joined by an edge if and only if

1. $i \leqslant k$, or
2. p_{i} and p_{j} are separated by fewer than k points on (the shorter arc of) the boundary of the n-gon.

(See Fig. 3.)

Fig. 3. The lower bound construction for $n=16$ and $k=3$. There are 75 chords and this is optimal.

Acknowledgment

We thank Micha A. Perles for his valuable comments and Emo Welzl for bringing this problem into our attention.

References

[AE] N. Alon and P. Erdős, Disjoint edges in geometric graphs, Discrete Comput. Geom. 4 (1989), 287-290.
[B] B. Bollobás, "Extremal Graph Theory," Academic Press, London/New York, 1978.
[E] P. Erdős, On some problems of elementary and combinatorial geometry, Ann. Math. Pura Appl. 53 (1975), 102.
[Gy] A. GyÁrfás, On the chromatic number of multiple interval graphs and overlap graphs, Discrete Math. 55 (1985), 161-166.
[GyL] A. Gyárfás and J. Lehel, Covering and coloring problems for relatives of intervals, Discrete Math. 55 (1985), 167-180.
[K1] Y. Kupitz, "Extremal Problems in Combinatorial Geometry," M. Sc. Thesis, Lecture Notes Series, No. 53, Aarhus University, 1979.
[K2] Y. Kupitz, On pairs of disjoint segments in convex position in the plane, Ann. Discrete Math. 20 (1984), 203-208.
[MP] W. Moser and J. Pach, "Research Problems in Discrete Geometry," mimeograph, McGill University, Montreal, 1987.
[OP] P. O'Donnel and M. Perles, personal communication.
[Tu] A. Tucker, Coloring a family of circular arcs, SIAM J. Appl. Math. 29 (1975), 493-503.
[T] P. Turán, On the theory of graphs, Colloq. Math. 3 (1954), 19-30.

[^0]: * Supported in part by NSF Grant CCR-8902422.
 ${ }^{+}$Supported in part by DIMACS.
 ${ }^{\ddagger}$ Supported in part by NSF Grant CCR-89-01484, Hungarian Science Foundation Grant OTKA-1814.

