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The maximum number of straight line segments connecting n points in convex 
position in the plane, so that no k + 1 of them are pairwise crossing is (‘;) if 
n<2k+l and2kn-(2k:‘)ifn>2k+1. 0 1992 Academic Press, Inc. 

1. INTRODUCTION 

One of the classical results in graph theory is Turin’s theorem (see 
[T, B]), according to which the maximum number of edges of a graph 
with n vertices containing no complete subgraph on k + 1 vertices is 
;( (k - 1)/k) (n* - r*) + (;), w  h ere r is the remainder of n upon division 
by k. 

As far as we know, Paul Erdiis was the first to suggest that similar ques- 
tions can be raised for geometric graphs, i.e., for graphs whose vertices are 
embedded in the plane and whose edges are straight line segments. In par- 
ticular, he asked the following question. What is the maximum number of 
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edges of a geometric graph with n vertices in general position, if it does not 
contain k + 1 pairwise disjoint edges? For k = 1 this maximum is equal to 
n, as was proved by Erika Pannwitz and H. Hopf (see [E]) and by 
Yaakov S. Kupitz [Kl 1. For k = 2, Noga Alon and Paul Erdos established 
the upper bound 6(n - 1 ), which has been recently improved by 
Paul M. O’Donnel and Micha A. Perles [OP] to about 3.6n. The lower 
bound $(n - 1) is due to Perles. The case k > 2 is completely open. 

Of course, the same question can be asked for geometric graphs whose 
n vertices form a convex polygon. As Kupitz observed, if such a graph does 
not contain k + 1 pairwise disjoint edges, then it cannot have more than nk 
edges, and this bound is tight. 

In this note we consider the “dual” problem. What is the maximum 
number of edges of a geometric graph whose n vertices are in convex 
position and which does not contain k + 1 pairwise crossing edges? We 
have the following result: 

THEOREM. Let fk(n) denote the maximum number of straight line 
segments connecting n points in convex position in the plane so that no k + 1 
of them are pairwise crossing. Then 

This question was raised by Bernd Gartner. The above theorem was con- 
jectured by Micha A. Perles, and for k = 2 it was also proved independently 
by Imre Ruzsa. The weaker bound fk(n) < k32kn follows from a theorem of 
And&s Gyarfas [Gy], which estimates the chromatic number of the inter- 
section graph associated with a system of chords of a convex n-gon. There 
are no nontrivial results concerning this problem if we drop the condition 
that the points are in convex position. 

Many related problems and results on geometric graphs can be found in 
[ K2, GyL, Tu, MP]. 

2. PROOF OF THE THEOREM 

Let k > 1 be fixed. For n < 2k + 1 the statement is trivial. Assume that we 
have already proved it for every natural number smaller than n, and 
consider a graph G consisting of a maximum number (fk(n)) of straight 
line segments connecting the vertices of a convex n-gon such that no k + 1 
cross each other. 
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Claim 1. If two vertices are separated by fewer than k points along the 
boundary of our convex n-gon, then they are connected by an edge of G. 

If there is no edge ab whose endpoints are separated by at least k vertices 
along (both arcs of) the boundary of the n-gon, then the number of edges 
e(G) < km So assume that there is such an edge ab, and let pl,p2, . . . . p,,,; 
41 > q2, ‘.‘9 qn2 denote the vertices of the polygon on the right-hand side and 
on the left-hand side of ab, respectively, listed in clockwise order. (See 
Fig. 1.) 

Obviously, n, > k, n2 2 k. 
We define a partial order “ < ” on the set of all edges of G that cross ab, 

as follows. TWO edges qipj and qirpjj are comparable if and only if they 
cross each other, and 

qipj -( qi,pj~ e i < i’ and j <j’. 

This is clearly a transitive relation. 
We say that the minimal elements in this partial order have rank 1. In 

general, we call the minimal elements of the partial order obtained by the 
deletion of all elements of rank smaller than r, edges of rank r. In other 
words, rank(g,pj) is defined as the largest integer r such that there is a 
sequence of edges 

In particular, it follows that 

1. no two edges of the same rank cross each other, 

2. the rank of every edge is at most k - 1 (otherwise, qi, pi,, . . . . qik pjk, 
together with ab would form a system of k + 1 pairwise crossing edges). 

q1 
b 

FIGURI: 1 



12 CAPOYLEAS AND PACH 

Let us define a convex geometric graph G1 with n2 + k + 1 vertices 
(a, pl*, PC . . . . pi=- 1, b, 41, q2, . . . . qn2) (in clockwise order), as follows. 

Let G1 be the same as G, when restricted to (a, b, ql, q2, . . . . qn*}. Let 
qip: be in E(G,) if and only if there is an edge qi pi E E(G) whose rank is 
r. (Note that this edge is not necessarily uniquely determined.) Finally, let 
(a,p:,pL . . . . pz- 1, b) induce a subgraph in G1 consisting of the single 
edge ab. 

CLAIM 2. G, does not have k + 1 pairwise crossing edges. 

Proof. It is sufficient to show that if there are t pairwise crossing edges 
4il PX 3 qi* P,*,, **ST qi,pz in G,, i, < i2 < ... < i,, rl < r2 < ..= < rr, then one 
can find t pairwise crossing edges in G, all of which cross ab and whose left 
endpoints are in the interval (qi : il < i < i,). 

Pick t edges qil pi, 3 qi2 pjz, --, qi,Pj, E E(G) with rank(qi, Pj,) = rl, 
rank(qj,pj2) = r2, . . . . rank(qi,pj,) = r,. 

We shall produce a sequence qu, pV, (p = 1, . . . . t) of pairwise crossing 
edges of G, such that: 

1. rawly P,,) = r/l 
2. 24, > i, for p = 1, . . . . t. 

We proceed by reverse induction on p. First define q,, pu, = qi, pj,. Assume 
we have already chosen qu, p”, for ,U = t, t - 1, . . . . s, s > 1, so as to satisfy the 
requirements above. There is an edge qupV of rank rs _ 1, that crosses qu,, pu,. 
If @is-,, choose this edge to be qu,-[ pVJSl, and we are done. If not, then 
qupu lies “below” qiS-lpjS-l (see Fig. 2), since two edges of the same rank do 

P. 
J, 

FIGURE 2 
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not cross. It follows that qis_lpj,_l must cross qu,pDS, and hence all the edges 
BU,P”, 9 s < p < t. In this case choose qis-lp~~-, to be qu,-, pV,-, . 1 

CLAIM 3. The number of edges of Gl, e(Gl) <fk(nz + k + 1) - k2 + k. 

Proof: It is sufficient to show that we can add k2- k edges to G1 
without creating k + 1 pairwise intersecting edges. In view of Claim 1, all 
edges of G1 whose endpoints are separated by fewer than k points and 
which are not in G1, can be added to it. 

Observe that, for every edge qipi E E(G), 1 < i < k - 1, 

rank(qipj) < i 

holds. This yields that 

qipr* 4 E(G,) whenever r > i. 

Furthermore, all edges within (a, p:, pt , . . . . pz- 1, b > except ab are missing 
from G1. Hence, at least 

k-l 

i= 1 

edges can be added to G1 without creating k + 1 pairwise crossing 
edges. 1 

Similarly, we can define a graph G2 with n, + k + 1 vertices 
Ia,P,,P 2 9 ***9 Pn, 3 4: 9 q2* , a”, qz- 1 >, by connecting q: and pi by an edge of 
G2 if and only if there exists an edge qipj E E(G) with rank(qipj) = r, and 
letting {wl,p2, . . . . pnl, b} induce the same subgraph in G2 as in G. Just 
like before, e( G2) <fk( rt I + k + 1) - k2 + k. 

Let degGl(p,*) (and deg,,(q,*)) be the number of points in G, (resp. G2) 
adjacent to p: (resp. q:). 

CLAIM 4. deg,,(p,*) + deg.,(q,*) - 1 is at least as large as e,, the 
number of edges of G having rank r (16 r < k - 1). 

ProoJ: This follows immediately from the fact that the edges of rank r 
form a forest on deg,,(p,*) + deg.,(qr) vertices. 1 

Since ab E E(G,) n E(G,), we obtain by Claim 4 

k-l 

4G)=4W+W2)-1- c (deg,,(p,*)+deg.,(q,*)-e,j 

r=l 

< e(Gl) + e(G,) -k. 
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This, combined with Claim 3, implies that 

e(G) <fk(nl + k + 1) +fk(n2 + k + 1) - 2k2 + k. 

According to our assumptions, n I + n2 + 2 = n, n1 2 k, n2 > k. Therefore, 

2k+lbni+k+l<n (i= 1, 2), 

and we can apply the induction hypothesis to obtain 

e(G)62k(n,+k+ 1)+2k(n,+k+ l)-2 

= 2k(n, + n2 + 2) - 2k2 -k 

=2kn- 

-2k2+k 

as desired. 
This estimate is tight, as is shown by the following construction: Let 

PI, P2, ‘**, pn be the vertices of a convex n-gon in clockwise order, and let 
pi and pi (i <j) be joined by an edge if and only if 

1. i<k, or 

2. pi and Pi are separated by fewer than k points on (the shorter arc 
of) the boundary of the n-gon. 

(See Fig. 3.) 

FIG. 3. 
is optimal. 

The lower bound construction for n = 16 and k = 3. There are 75 chords and this 
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