Hop-spanners for geometric intersection graphs

Csaba Tóth

Abstract

A t-spanner of a graph $G=(V, E)$ is a subgraph $H=\left(V, E^{\prime}\right)$ that contains a uv-path of length at most t for every $u v \in E$. It is known that every n-vertex graph admits a ($2 k-1$)spanner with $O\left(n^{1+1 / k}\right)$ edges for $k \geq 1$. This bound is the best possible for $1 \leq k \leq 9$ and is conjectured to be optimal due to Erdős' girth conjecture.

We study t-spanners for $t \in\{2,3\}$ for geometric intersection graphs in the plane. These spanners are also known as t-hop spanners to emphasize the use of graph-theoretic distances (as opposed to Euclidean distances between the geometric objects or their centers). We obtain the following results: (1) Every n-vertex unit disk graph (UDG) admits a 2 -hop spanner with $O(n)$ edges; improving upon the previous bound of $O(n \log n)$. (2) The intersection graph of n axis-aligned fat rectangles admits a 2 -hop spanner with $O(n \log n)$ edges, and this bound is tight up to a factor of $\log \log n$. (3) The intersection graph of n fat convex bodies in the plane admits a 3 -hop spanner with $O(n \log n)$ edges. (4) The intersection graph of n axis-aligned rectangles admits a 3 -hop spanner with $O\left(n \log ^{2} n\right)$ edges. (Joint worth with Jonathan B. Conroy)

