
Discrete Applied Mathematics 25 (1989) 37-52 
North-Holland 

37 

RAMSEY-TYPE THEOREMS* 

P. ERDOS and A. HAJNAL 
Mathematical Institute of the Hungarian Academy of Sciences, Budapest, V. Redltanoda, 
II. 13-12, P.O.B. 127, H-1364, Hungary 

Received 9 January 1989 

In this paper we will consider Ramsey-type problems for finite graphs, r-partitions and 
hypergraphs. All these problems ask for the existence of large homogeneous (monochromatic) 
configurations of a certain kind under the condition that the size of the underlying set is large. 
As it is quite common in Ramsey theory, most of our results are not sharp and almost all of them 
lead to new problems which seem to be difficult. The problems we treat are only loosely con- 
nected. So we will state and explain them section by section. 

Introduction, notation 

Our notation will be standard (we hope) hence we state only a few conventions 
in advance. 

For rr,k~R\I, [n] denotes the set {1,2,...,n}, [Af‘={BCA: jBl=k>, but we 
write [nlk for [[n]lk. G=(Vd,E,)=(V,IZE) is a simple graph, i.e., EC [VI*. 8” is 
the se? of graphs having n vertices, B is the complement of G, i.e., G = (V, [V]* \E), 
K, is (the isomorphism class) of the complete graph on n vertices. For r,kE tN and 
V a set, an r-partition of V with k colors is a map f : [VI’+ [k], 2-partitions of V 
with 2-colors can be canonically identified to graphs with vertex set V, by the 
formula 

f(e) = 1 * eEE for ee[[V]‘. 

A subset A C V is homogeneous (monochromatic) for f if f is constant on [A]‘. 
For a graph G=(V,E), G[A] is the subgraph of G induced by A, i.e., G[A]= 

(A,En [VI*>. Hence a subset A C V is homogeneous for G if and only if G[A] is 
either complete or independent. We write HC G if H is isomorphic to an induced 
subgraph of G. 

For A c V we denote by G(A) the neighbourhood of A in G, i.e., G(A) = {ycz I/: 
3xeA {x,y} EE}. For XE V we write G((x})=G(x). 
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1. On subgraphs of graphs not containing large homogeneous sets 

As it is well known, Ramsey’s theorem implies that large graphs contain large 
homogeneous subsets. The following estimates are the starting point of Ramsey 
theory. 

All GE B” contain a homogeneous set of size at least 
(log n)/(2 log 2) [12]. (1-l) 

For all sufficiently large n there is a GE 8” not containing 
homogeneous sets of size (2 log n)/(log 2) [ 11. (1.2) 

The graphs establishing (1.2) are nowadays called Ramsey graphs or Ramsey-like 
graphs and are proved to exist with a probabilistic argument. Recently Frank1 and 
Wilson [14] constructed graphs GE 8” which, for sufficiently large n and for c>O, 
do not contain homogeneous subsets of size 

eCiG 
(1.3) 

We have been interested in the structure of Ramsey-like graphs for a long time. 
We investigated such problems for infinite graphs in [a]. There are many ways to 
express that such graphs are complicated and similar to random graphs. One of 
them uses the following definition. 

A graph G is i-universal if for all graphs H with I vertices HE G holds, i.e., H 
is isomorphic to an induced subgraph of G. We can expect that for sufficiently large 
n and fixed 1 all Ramsey-like graphs are I-universal. In [7] we proved this for graphs 
not containing homogeneous sets of size c log n. In an addendum we claimed the 
following stronger result: 

Theorem 1.1. Assume 1~ fN, 0~ CC l/l. Then there is an no = no(l, c) such that for 
all n > no, G E 9’ and k < ece” either G contains a homogeneous subset of size 
k or G is I-universal. 

The first aim of this section is to give a proof of this result. Before doing this we 
want to make some remarks. We do not know if this result is the best possible. The 
appearance of the expression 

ecKn 

in both (1.3) and Theorem 1.1 seems to be a coincidence, since the graphs con- 
structed by Frank1 and Wilson [14] are f-universal. 

The following could be true. 

For all graphs H there is an s>O such that for all sufficiently 
large n and for all GE 8” either HE G or G contains a homo- 
geneous set of size n”. (1.4) 
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First let us remark that well-known results show that for H=K, (1.4) can only 
be true with E I (r- 2)/((i) - 1) (see e.g. [16]). Hence the E of (1.4) may tend to 0 
if the size of H tends to infinity. We knew for a long time that (1.4) is true for some 
special graphs H. For example E = f will do for Cd. Note that we do not know if 
this is the best possible, we only know that e< i, for C,. 

Our next result says that (1.4) is true for a class of graphs. 

We define by induction a class 9 of graphs, which we will call 
very simple. K1 ~9. Assume GI,G2~9’, V, fl V,=0. Then G= 
(v,‘,E)EPif V=v,UUZandEiseitherErUEzorErUE,U 
tV,,1/21, where tV1,1/21=({q,u~}: ~1 E ~~/\zQE V,}. (1.5) 

Theorem 1.2. VNE $7 3e>O 3no Vn> n,-, VGE B” either HE G or G contains a 
homogeneous set of size at least n’, i.e., (1.4) is true for the very simple graphs H. 

Before turning to the proofs we make some more comments. The only H $ .Y for 
which we know that (1.4) holds is P4, the path of length 4 (having four vertices), 
since known results imply that graphs not containing an induced copy of P4 are 
perfect (see e.g. [IS]), hence a=+ works for them. The simplest graph for which 
we do not know (1.4) is Cs. However there is an even simpler problem pointed out 
to us by Lovasz. We cannot even prove that if neither G nor G contains an odd 
circuit as an induced subgraph, then G contains a homogeneous set of size n”. On 
the other hand if the strong perfect graph conjecture holds, e=+ must work for 
such graphs. 

Finally we state a generalization of Theorem 1.1 without proof. 

Theorem 1.3. Assume 1,s E id, ST 2 and h : [l] 2 + s. There are no and c > 0 such that 
for all n L no and for all 2-partitions g of length s of [n], g : [n12 --t s, either there is 
aBC[n], \BI=lwithh~gIBorthereisasubsetHcVofsizee ‘e which is 
not totally inhomogeneous for g, i.e., for some ie [s], g(e) #i for all eE [H12. 

We mention that there are estimates analogous to (1.1) and (1.2) for the size of 
the largest not totally inhomogeneous set for a g: [n12+ [s]. The size of these sets 
is c, lngn where c, tends to infinity with s [13]. 

We need some lemmas. The first one is about very simple graphs, which will be 
used in the proof of Theorem 1.1 as well. 

Lemma 1.4. Assume HER, IHI = k. Then H contains a homogeneous set of size 
at least k’“. 

Proof. It is a well-known fact that very simple graphs are perfect. The simplest way 
to see this is the following. Denote, as usual, by cc(H) the size of the largest indepen- 
dent set and by o(H) the size of the largest complete graph and prove by induction 
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that for HER, 

cx(H)o(H)r (HI. 0 

The following is the crucial lemma needed for the proof of Theorem 1.1. 

Lemma 1.5. Assume GE 3P, HE 8’, 1 s 1 s n, OC c< 1 and H is not isomorphic to 
an induced subgraph of G. Then there are i E [I] and two disjoint subsets A,B C V= 
Vo such that 

, IBI 18-l 
-I 

and either for aN SEA, IG(x)fl BIsc’L~ 
c’LnNJ. 

t//J or for all xeA, IG(x)fI BI s 

n 11 __ 
I 

Proof. Let V= At U ---U A, be a disjoint partition of V with IAi 12 Ln/lJ for 
iE[I] and let yt,..., JQ be an enumeration of V’. We want to choose a sequence 
xi E Ai for i E [I] in such a way that 

H= G[(x ,,..., x,}]. 

We use induction on I. 
Assume first that there is an XEA, such that for j=2,...,1, 

IG(x)nA~!r~lAjl if {_YI,_Yj}EEH and IG(x)~IA~Izc~A~~ if 
{Yr,Yj> ~EH. (1 J-9 

We choose xi E A, to be such a point and write 

A! _ G(x) n Aj if {Yl,Yj> EEH, 
/- t G(x) n Aj if {YI,Yj} GEH 

for j=2, . . . . 1. Applying the induction hypothesis for the sets {A;: j=2, . . . ,!> we 
get that eitherthereare+EAjsuch that H[{Y~,...,Y,}] ~G[{x~,...,x,)] and, as a 
corollary of this, 

HE G[{xl, . . ..x.}] 

or there are sets A, B satisfying the requirement of the lemma for an i, 21 ill. 
If there are no XE Al satisfying (1.6), then for all xtzA, there is a j(x) = j, 

21jrfsuchthat /G(x)fIAjI<clAjI incase{y,,yj}EEHand IG(x)fIAjI<clAjI 
in case {J’I,J’j)@EH. There is a jE[I] such that for A=(xEA,: j(x)=j} and B= 
Aj we have IAl > IA, IN and A, B satisfy the requirements of the lemma with 
i=l. q 
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Proof of Theorem 1.1. We may assume 123. Let HE 8’ and let 

fH(n) =min{max(IAI: AC V,AG[A]ESP}: GEB”AHC~C~}. 

By Lemma 1.4, it is sufficient to prove that 

fj&r)le’+ for sufficiently large n. 

Set K= (I log2+ 2 1ogf)N. We prove by induction on n that 

fH(n) 1 e’= -K holds for every n. (1.7) 

The claim is trivial in case eCfimK12, as all two-element graphs are very 
simple. Hence we may assume cfi >K and (1.7) holds for all n’ <n. Write 
g(n)=ecemK. Let GE%” and HEG. 

We apply Lemma 1.5 choosing the c of Lemma 1.5 as 1/(2g(n)). Let A, B be the 
two sets given by Lemma 1.5. We may assume 

and w.1.o.g. 

~G(x)nB~+----- 2gin) IBI for all xeA. 

By the induction hypothesis, there is Al c A, 

> 
with G[A,] ~9. 

We may assume lAr/ <g(n), otherwise we are home. It follows that for B’ = 
B\ u {G(x): XEA~} we have 

IB’IZ PI -G-PI 4BI 2 Igcn;2,r2, * 

Using the induction hypothesis again, we find a B1 C B’, G[B,] E 9 with 

PI =g( lg@)Y2’/2, * 
> 

As, by our construction, G[A, U B,] is very simple too, and GE 9”~ H @ G is ar- 
bitrary we obtain that 

Now we compute this last number (neglecting the integer part sign) and show that 
this is at least g(n). 
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=exp{10g2+c(10gn-I10g2-210gI-c~+IK)’”-K} 

rexp(log2+c(logn-Icfi)“2-K) 

2 exp{cfi -K} 

provided c(log n”2 -(logn-Ic logn)‘“)ZSlog2. 
But log n1’2 - (log n - Ic*)“2 IC holds trivially, hence the left-hand side of 

the last inequality is at most c, since cl < 1, and c< log 2, holds by c< +. 0 

Note that, as the proof shows, Theorem 1.1 remains true if I tends to infinity 
slowly enough, say if I= o($g%loglogn). 

Proof of Theorem 1.2. It is clearly sufficient to prove the following statement. 

Assume HE % =, kEl& VH=I/I u V,, v,nv,=0, jv,j=lv,l= 
k, [VI, V2] C EH. Assume further that there exists O<el < 1 such 
that for sufficiently large n and for all GE 8” not containing 
homogeneous subsets of size at least n”‘, H1,H2 C G for Hi= 
H[l$], i= 1,2. 

Let c2 = eel, Q < 1/(2k + 1). Then for all GE 8”” not contain- 
ing homogeneous subsets of size nE2, H, C G holds for all suffi- 
ciently large n. (1.8) 

To prove (1.8) assume GE 8” and G does not contain homogeneous sets of size 
n”‘. Then, for all A E [V]“e, there is a BE [Alk with G[B] z H, provided n is large 
enough. We may assume in the proof that IG(x)l r n’-E2 holds for all XE I/ other- 
wise we get a large independent set. Let S= ((B,x): BE [Vlk/\x~ VABCG(x)l\ 

H, z G[B]}. By averaging, we get 

for some cl > 0. 
Hence there is a B1 e [Vlk such that for A = {XC V\ B, : B1 C G(x)) we have 

IAl rczn ‘-(E*+e)k for some c,>O. 

Now, if ~~(1 -(.c2+e)k)zc2, then there is a B2CA, lB21 =k such that G[B,]= 
H2, and then G[B, U B2]. EH. But the inequality required is equivalent to the in- 
equality 1 r&l + q)k+e, which follows from the assumption e< 1/(2k+ 1). 0 

Note that the proof yields that for HE S2’, e = [(2t+ 1)(2t- l)..- 11-l works. 
This bound is clearly not best possible, but not very bad either. 
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2. Large weakly homogeneous r-sequences 

Let G=(V;E) beagraph, rczh\l. Asequence (A,,...,A,}C[V]‘of pairwisedis- 
joint r-element subsets of V will be called a weakly complete r-sequence of length 
t for G, if for every pair {i,j> E [t]‘, [Ai,Aj] contains an edge of G. 

{A t, . . . , A,} will be called weakly homogeneous for G if it is weakly complete, 
either for G or G. It is clear that weakly homogeneous l-sequences correspond 
canonically to homogeneous sets, and the larger the r, the easier it is to get weakly 
homogeneous r-sequences. 

Large graphs not containing long weakly homogeneous r-sequences, r~ n\l, play 
an important role in infinite combinatorics and especially in applications to 
topology. Though it is not clear (even to us) that the finite version of this problem 
is very useful, in this section we give estimates on the length of the weakly 
homogeneous r-sequences necessarily contained in graphs on n vertices. Our main 
motivation is that this investigation leads to a problem which seems to be of intrinsic 
interest. 

Theorem 2.1. (A) Assume ~>2’~” r. There is an no such that for all n > no there is 
a G E 8” without weakly homogeneous r-sequences of length clog n. 

(B) Assume CC ($)‘. There is an no such that for all n > no every G E FP contains 
a weakly homogeneous r-sequence of length at least +c log n. 

Proof. The proof of (A) is a straightforward probabilistic computation. Taking 
each edge with probability t, 

Pr(There is a weakly complete r-sequence of length t for G) 
1 (9 

In” l-2 ( > <l if t>2”+‘rlogn. 

For the proof of (B) we need the following: 

Lemma 2.2. Vrc N Va>O 3no Vn > no VG E 33” 3A E [VI’ such that either 

[G(A)1 ~(1 -(+)‘(l +e))n or /G(A)1 ~(1 -(q)‘(l +e))n. 

Before giving the proof we remark that the example of the random graph shows 
that 3 cannot be replaced by anything smaller than + and we are left with the an- 
noying problem, if Lemma 2.2 holds with $- instead of 5. Note that we can prove 
this for r= 1,2 only. 

Proof of Lemma 2.2. For r= 1 the claim is trivial. We use induction on r. Let 
A,(A) = {x E V: Vy E A, {x,y} E E}, and let d, denote the degree of the vertex in G, 
i.e., d,= jG(x)j for XE I’. We set & for IG(X)l. 

Assume first that there are x,y~ Y with d,>$-n and d,,>Sn. Then IG(x)fl 
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G(y)] >+n. Let V, c G(x) f7 G(y), 1 V, I= r+l and V2 = V\ I$. Applying the in- 
duction hypothesis for G[V,] we get an A’ E [I$]‘-’ such that either G(A’) n I$ or 
G(A’)fl V, has cardinality at least +n(l - (+)‘(l +E)) for large enough n. Clearly 
either A = {x> UA’ or A = (y} UA’ satisfies the requirements of Lemma 2.2. 

Hence w.1.o.g. we may assume that d,s$+z for XE K Let S={(A,x): 
A E [ V]‘l\xe VAA C G(x)). Counting the number of pairs in Sin two ways, we get 
that 

This implies that min( I&(A)]: A E [VI} ~n(l + E)(+)’ if n is large enough. 0 

Returning to the proof of Theorem 2.1(B), it follows from Lemma 2.2, by a stan- 
dard argument, that for c<(f)‘we can pick a sequence A;, . . ..A., t’= [clog n1 of 
pairwise disjoint r-element sets in such a way that for 1 pi< t’ either 

j$+,AjCG(4) or jG+t@G(A& 

We then can choose CL tt’ sets At, . . . , A, from the sets A;, . . . , A; such that either 
AjCG(Ai) for l~i<j~t or AjCG(Ai) for l~i<j<t. The sequence AI,...,A, is 
then weakly homogeneous for G. 0 

Note that the proof gives a sequence having a stronger property than required by 
Lemma 2.2, and it can be seen with a slight change of the probabilistic argument 
used for the proof of Theorem 2.1(A) that such sequences of length 2’r log n do 
not necessarily exist for a GE 8”. We omit the details. 

3. r-almost homogeneous subsets of a graph 

Let G = ( V, E ) be a graph, r E n\s, A c V. A is said to be r-almost complete for G 
if e[A] does not contain a Kr+, . It is clear that l-almost complete sets are 
complete. 

A is said to be r-almost homogeneous for G if it is r-almost complete either for 
G or for G. Clearly l-almost homogeneous means the same as homogeneous. 

One can define a generalization of the Ramsey function R(k, I) say R(k 1 r, 11 s) = 

min(n: VG E 9” either there is an AC V, IAl = k, A is r-almost complete for G or 
there is a BC V, IBI = I, B is s-almost complete for G}. There is no existence 
problem, since clearly 

R(kIr,Ils)sR(k,I) for r,s~h\s. 

It is also clear that this function can be generalized for partitions to more that 
2-classes, and for hypergraphs as well. Indeed we raised the problem in [ 1 l] in full 
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generality, but we treated there the infinitary problems only. In this case we are 
more convinced that the problems arising are relevant. Unfortunately on this 
problem we have less information than on the problem treated in Section 2. 

First we give a rather weak result for the symmetric case, R(k Ir)=R(k]r, klr) 
and then we state some miscellaneous remarks and problems about the non- 
symmetric case. 

Theorem 3.1. (A) 300 Vr,n E IN AGE $4” having no r-almost homogeneocls 
subsets of size 

c2qr+ 1)2log n. 

(B) Vr 3n0 Vn > no VG E Sn there is an (r+ I)-almost homogeneous subset of size 
at least 

rlogn 

2log2’ 

It is left to the reader to compute the estimates for R(k 1 r) from these results. 

Proof. (A) We work in the probability space where the edges are chosen in- 
dependently with probability -$. We need the following fact. 

There is a constant co>0 such that for all $ r E N and 
for all IA I= k there is a system SC [A]‘+’ such that 1.9 11 

c&*/(r+ l)* and IXn Y 1 I 1 holds for X# YES. (3-l) 

This follows from a theorem of Wilson [17]. Let d be the event that A E [vJk is r- 
almost complete, and Bx the event that X is not complete for G, for XE~. Then 

1 
I%(&) 5 1 - - 2(‘$‘) ’ Pr(&)rPr 

and the Bx being pairwise independent, 

It follows that 

Pr(There is an r-almost homogeneous subset of size k) 

r2(;)(1- &~~‘~f+~)2 c 1 provided k>c2(ri*1(r+ 1)*log n 

for some c. 
(B) If n is large enough and GE P, then by the Erdiis-Szekeres theorem (Ll), 

there are 2r- 1 pairwise disjoint homogeneous subsets of size at least +(log n)/ 
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(log 2) for G. Either r of them is complete or r of them is independent. The union 
of these r sets is r-almost homogeneous. 0 

Clearly Theorem 3.1(B) is very weak, but we know no nontrivial improvement. 
Here is a very simple problem. Let r(n) be the inverse of the Ramsey function, i.e., 

r(n)=min(max{jAI: AcGAA is homogeneous for G}: GE $9’). 

Is it true that for all (or for many) n for all GE 8” there is an A c V that is 
2-almost homogeneous for G of size 2r(n)+ l? 

Turning to the nonsymmetric case we remind the reader the Erdiis-Szekeres 
theorem 

k+l-2 
Wk,O~ k_ l  ( > * 

We cannot even formulate a conjecture for the upper bound on R(k 1 r, 11 s) in the 
general case. We are going to make some comments on the relation 

n=R(kI 1, rIs)=R(k, /Is). (3.2) 

The following is just a restatement of some old results. 

Theorem 3.2. Assume ~12. Then in (3.2) 
(A) n=k+s- 1 for 112s; 
(B) k’+“<n<~k’+“~ for I= 2s + 1 for some 4, c> 0; 
(C) R(k, 5 I2)~ck~‘~ for some c>O. 

Proof (Sketch). (A) can be reformulated as follows: Assume TE n\l and for all A c V, 
IAl 52r+2, r(G[A]) =r holds. Then r(G)-cr. Here 7(G) is the minimal number of 
points representing all edges. This is a theorem of Erdiis and Gallai 151. 

The upper bound in (B) follows from [4]. If every (2s+ 1)-element set contains 

a &+I of GE 8”, then C,, I KG. Then, by the theorem mentioned, there is a 
&C G provided n > ck(' + “‘). To prove the lower bound we use the following 
theorem of ]2]. For all SE N there are c>O and no such that for all n >no there is 
an HE B” with girth greater than 2s+ 1 and not containing an independent set of 
size n’-‘. G=fi shows that (B) holds. Note that R[A] is bipartite on every set 
IAl 12s+ 1, hence KS+, CH[A]. (C) is just a better lower bound then the one 
obtained in (B) for the special case s = 2. The proof of (C) is implicitly contained 
in [16]. q 

As we have already mentioned the Ramsey function for almost homogeneous sets 
can be generalized for triple systems (3-uniform hypergraphs). We define a special 
case R3(k, I Is) is the minimal n such that for all triple systems H= ( V,E), 
EC[V13, with Il/l=n either KiCH, i.e., 3A:V IAI=kA[A]3CE or 3BCV 

IBI =I such that KJ+IEHIB]. 
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We now discuss an analogue of the previous theorem, concerning the relation 

n=R(k,I[3). (3.3) 

Theorem 3.3. In (3.3) 
(A) n=k for 1=4; 
(B) 3a>l ka<n<k3 for l=S; 
(C) 300 2ck<n for 1=8. 

We do not know the right order of magnitude for I = 6,7. 

Proof. (A) is trivial. For the lower bound of (B) we use a theorem of Erdos and 
Hajnal [8], a generalization of the Erdiis theorem used in the previous proof. A 
triple system K is t-circuitless if for every K’CK, 1 I IK’I It, IUK’I >21K’I. We 
proved that for every t there are E > 0 and no so that for e rery n > no there is a 
t-circuitless triple system K on n vertices having no independent set of size n’-&. 
Applying this with t = 3 and choosing H = K, we see that every 5-element set contains 
a Kj of H and H has no complete set of size n1 -‘. Set (Y = (1 - E)-‘. 

The upper bound is due to Fiiredi. Assume H is a triple system such that every 
j-element set contains a Kj of H. For each e E [I’]* let R(e) = (xe V: e U (x} E l?}. 
As, by the assumption, H(e) is a complete set of H for every eE [VI*, we may 
assume I H(e)/ in 1’3 If now A is a maximal complete set of H, then . 

V\A = U{R(e): eE [A]‘}, 

consequently n - IA 1 I (‘<l)n’” from which we get IA I r n”3. 
Finally, to see (C) consider a random tournament on n vertices and let H be the 

collection of nontransitively oriented triples. 
As every tournament on 8 vertices contains a transitive subtournament of four 

vertices, H satisfies our requirements. For triple systems constructed in such a way 
see e.g. [9]. IJ 

4. Remarks on the Ramsey function for 3-partitions 

We will denote by %‘3,n the class of 3-uniform hypergraphs. For HEYZ~.~, 
H= ( VH,EH) = ( CI,E) where EC [V13. ,!? denotes the complement of E. If f: 
[ VI3 + [2] the formula f(e) = l* e E EH defines a corresponding hypergraph. The 
Ramsey function R3(k 1, . . . , k,) is defined as usual: 

R3(k 1,...,kJ=min{n:Vf:[n]3-,[s] 3i~[s] 3AE[n]ki 
f is constant on [A13}, 

R3(k, ,...,k,)=Rj(k) for kl= a-- =k,=k. 
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We remind the reader of the following facts: 

Let n =@(k). Then for some c>O, 

clog logn5k5 (4.1) 

But: 
For n=J$(k), for some c>O, ksclog logn. (4.2) 

Fact (4.1) is due to Erdos and Rado, (4.2) is due to Hajnal. For both statements 
see [lo]. Note that the upper estimate in (4.1) is obtained by probabilistic methods. 
It is a concensus among experts that the probabilistic method as it is known today 
cannot help to close the huge gap in (4.1), while the method used for the proof of 
(4.2) does not seem to work for fewer then 4 colors. 

We are going to prove two theorems: 

Theorem 4.1. For n = R:(k), 

log n log log log n l/2 
k< 

log log n > 

for n large enough. 

Here we did not bother to get the best possible upper bound. We only wanted to 
get an essentially better upper bound then the one given by the probabilistic 
argument. 

To state the next result we need one 
A C I/ we define the density of H on A, 

D,(A)= IEfI [Al31 ‘;’ . 
I( > 

The next result is kind of a discrepancy 
graphs. 

Theorem 4.2. 

more definition. For H= ( V,E) ES%?‘*“, 
D,(A), as follows 

result contrasting the situation known for 

Vc<1/(2log2) 3n,, Vn>n,, VHES’~~” 3ACV 

jcfi< IAl SC*A ID,(A)-+I Z&J& 

Before giving the proofs we state a few questions raised by this result. Can one 
improve this result by specifying the cardinality of A? Can one exhibit a “fixed con- 
figuration” of density >t to occur monochromatically? Finally, can one replace 
$0 by + - E for E > 0 for sufficiently small c? 

Proof of Theorem 4.1. Let n = rs, r,sz2. We are going to define a 3-coloring of 
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the set Y=(x: x=(x,,..., x,)Ax~E[~] for i~[.s]). Note that IPI =rS=n. For xf 
y E I’ let 6(x,y) = min{ i E [r]: xi #a} be the so called first discrepancy for x and y. 

First we split the triples of V into two parts. For {x,y,z) E [VI3 let d(x,y,z)= 
(&&y),~(x,z),~(y,z)). Let (x,y,z} E& if Id(x,y,z)l s2 and (x,y,z} E&? if 
Id(x,y,z)l = 1. For (x,y,z} E &? there is a G(x,y,z) = i such that 

Xj=Yj=Zj for j<iAje [s], {xi,Yi*zi> E tr13* 

Put briefly cc, = (klog 2) “’ By (4.1), there is a mapping g: [d3+ [2] without a . 

homogeneous set of size co+. 
Define a mapping f: [ VI3 + [3] as follows. For {x,y, z} E [ VI3 let f({x,y, z}) = 3 if 

{x,~,z~~~andf((x,y,z))=g((x~,y~,z~)) if (x,y,z}~S and S(qy,z)=i. 
Assume now that A c [VI3 is homogeneous for f in the class v E [3], IA I r 3. 
If v = 1 or v= 2 it is obvious that there is an ie [s] such that G(x,y,z) = i for all 

{x,y,z} E [Al3 and { x, . XE A) is homogeneous for the partition g. Hence IA I I .* 
C&g?. 

Assume that A is homogeneous for the third colorclass off. Then Id (x,y, z) I 2 2 
for (x,y,z)~[A]~. Clearly ){xt:x~A)I12 and also for ie[s-1] and (yl,...,yi) 
with yje [r] for jE [i], 

I&+1: xcAAVj.[i] xj=yi>l 12. 

It follows easily that IA I s 2’ for such an A. 
With a suitable choice of r and s this partition gives a result even better we 

claimed. 
We just indicate the computation. Choose 

Then 

1 log n 10&3)(n) 

logr=z lW(2)W - 

The first two colors do not contain a homogeneous set of the claimed size, while 

2X=logn c,2Wogc3,00) =o 
cc 

log n log&r) 112 

>> log(,,w * 

0 

For the proof of Theorem 4.2 we need the following: 

Lemma 4.3 (Erdiis 131). There are an no and a c>O such that for all n> no and for 
all HES’ n there are two disjoint sets A, B with 

IAIr Ill’iogn 
i 1 IBI =cn 1 - 142 log 2) 

2log2 ’ 

such that either [A, B12* ’ cEH or [A, 1312- ’ n EH = 0 where 
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For the convenience of the reader we outline the proof. Let A, c V, IA, I = 
re*l. For XE V\At define a graph G,=(A,,E,) in such a way that for 

eE [All’, 

eEE,oeU {x} EE=EH. 

By (l.l), for each XE I/\/l, there is an AxCAl homogeneous for G,, IA,1 = 
Ifi/;! log 21. As 

there is a set 

such that A, =A for XE Bt and there is IBC B1 I, IB I r +lB, I satisfying the 

requirements of the lemma. 17 

Proof of Theorem 4.2. Assume c< l/(2 log 2), H= ( V, E) c&f3,“. Put m = c log n. 
Let a! =t + +fi, /I= + - +1/1. If n is sufficiently large then, by Lemma 4.3, there 
are disjoint sets A,Bc V, IA I =am, IBI =/? m such that either [A, B12* ' c E or 
[1I,l?]~~‘nE=0. W.1.o.g. we may assume [A,E]2v'~E. 

Note that, by the choice of (Y and p, we have $-m_c IA I, IBI sm. So we may 
assume ID&l) - + I s &fl and I&(B) - -&I s &fi otherwise we are home. 

Let C=AUB. Then 

1 +(a3 + p3) + 3a93 - &x3 + j33)fi. 

Now the reader should compute that for the choice of a and /3 we made, $(a3 +p3)+ 
302/3=++&fi holds. Indeed if o=t+ifi, /3=%-$, then from 1=a3+ 

3a2/?+ 3oB2 + p3 we get 

+‘3 + p3) = + - +(cw2P + o/32) = + - +orp, 

1(~2+p3)+3a2P=t+3a2P-~~~=t+3a(l-(Y)((r-_) 

=++3($-&fi=++@ 

Since a3 + p3 I 1 if follows that Q&C) > + + A@. 
Though we wrote down the proof above with some abuse of the equality sign, we 

consider the proof finished. 0 
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Note added in proof 

We were wrong in guessing that Theorem 3.1(B) is weak. It is Theorem 3.1(A) 

that can be improved considerably, in fact it is almost exact. 
Using the same random graph we can prove Vr e IN Ve > 0 3n, Vn > no 3G E G” 

having no (r+ I)-almost homogeneous subsets of size ((2r+ &)/log 2)log n. This 
follows from the result stated below. 

If G,(k) is the number of graphs with k vertices not containing K, as a subgraph, 

then 

WWW k2 
,og2 =+--&)+Og2). 

This in turn was proved in [ 181. 
The estimate given in our original proof gives some orientation in case r tends to 

infinity, in a range where the estimate for G,(k) is no longer valid. 
An affirmative answer to the problem stated below Lemma 2.2 is given in the 

paper “Domination in colored complete graphs”, by P. Erdiis, R. Faudree, 

A. GyBrf6s and R.H. Schelp, to appear in Journal of Graph Theory. 
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