A note on the clique chromatic number of geometric graphs

Jacob Fox∗
Stanford University
Stanford, CA, 94305
jacobfox@stanford.edu

János Pach†
EPFL, Lausanne and Rényi Institute, Budapest
H-1364 Budapest, Pf. 127
pach@renyi.hu

Andrew Suk‡
University of California at San Diego
Department of Mathematics
La Jolla, CA, 92093
asuk@ucsd.edu

Abstract

Given a finite point set V in \mathbb{R}^d and a parameter $r > 0$, the corresponding geometric graph G in \mathbb{R}^d is the graph whose vertex set is $V \subset \mathbb{R}^d$, and vertices $u, v \in V$ are adjacent in G if and only if $||u - v|| \leq r$. In this note, we study the clique chromatic number of geometric graphs, that is, the minimum number of colors required to color the vertices of a graph such that every maximal clique of size at least two is not monochromatic. Improving the results of McDiarmid, Mitsche, and Pralat, we show that if G is a geometric graph in \mathbb{R}^d then $\chi_c(G) \leq 2^{O(d)}$. From the other direction, we show that there are geometric graphs G in \mathbb{R}^d such that $\chi_c(G) > \Omega(d^{1/2} (\log d)^{-1/2})$.

∗Supported by a Packard Fellowship and by NSF CAREER award DMS-1352121.
†Supported by Swiss National Science Foundation grants 200020-162884 and 200021-165977.
‡Supported by NSF grant DMS-1800736, an NSF CAREER award, and an Alfred Sloan Fellowship.
1 Introduction

Given a simple graph $G = (V,E)$, a proper coloring of G is a coloring of the vertices such that no two adjacent vertices have the same color. The chromatic number of G, denoted by $\chi(G)$, is the minimum number of colors required to properly color G. A clique coloring of G is a coloring of the vertices such that no maximal clique of size at least two is monochromatic. The clique chromatic number of G, denoted by $\chi_c(G)$, is the minimum number of colors required to clique color G. Clearly we have $\chi_c(G) \leq \chi(G)$ for every graph G, and if G is triangle-free, then we have $\chi(G) = \chi_c(G)$. The clique chromatic number has been studied in many papers, and we refer the interested reader to [2, 3, 6, 5].

McDiarmid, Mitsche, and Pralat [5] initiated the study of the clique chromatic number of geometric graphs in \mathbb{R}^d. Given a finite point set V in \mathbb{R}^d and a parameter $r > 0$, the corresponding geometric graph G in \mathbb{R}^d is the graph whose vertex set is $V \subset \mathbb{R}^d$, and vertices $u, v \in V$ are adjacent in G if and only if $||u - v|| \leq r$, where $||u - v||$ denotes the Euclidean distance between u and v. McDiarmid et al. [5] showed that if G is a geometric graph in \mathbb{R}^d, then $\chi_c(G) \leq 2(\sqrt{d} + 1)^d$. In the other direction, they showed for each $d \geq 1$, there are geometric graphs G in \mathbb{R}^d such that $\chi_c(G) > \Omega(d^{1/4}(\log d)^{-1/2})$. In what follows, we improve both of these bounds.

Theorem 1.1. The clique chromatic number of any geometric graph G in \mathbb{R}^d satisfies

$$\chi_c(G) \leq 2^{O(d)}.$$

Theorem 1.2. For every integer $d \geq 1$, there exists a geometric graph G_d in \mathbb{R}^d whose clique chromatic number satisfies

$$\chi_c(G_d) \geq \Omega(d^{1/2}(\log d)^{-1/2}).$$

2 A new upper bound

Proof of Theorem 1.1. Let $G = (V,E)$ be a geometric graph in \mathbb{R}^d with parameter $r > 0$, where $V \subset \mathbb{R}^d$. Let B_0 be a sufficiently large ball with radius R such that $V \subset B_0$, and let $\mathcal{C} = \{B_1, \ldots, B_m\}$ be a maximum packing of B_0, where B_i is a ball centered at $v_i \in \mathbb{R}^d$ and with radius $r/4$. Note that \mathcal{C} is finite by volume considerations, and in fact, $m = |\mathcal{C}| \leq \left(\frac{R}{(r/4)}\right)^d$. For each i, let B'_i and B''_i be balls centered at v_i with radius $r/2$ and r respectively. Set $\mathcal{C}' = \{B'_1, \ldots, B'_m\}$ and $\mathcal{C}'' = \{B''_1, \ldots, B''_m\}$. Notice that for any point $x \in B_0$, there is a ball $B_i \in \mathcal{C}$ such that $||x - B_i|| < r/4$, which implies that $x \in B'_i$. In other words, $B_0 \subset \bigcup_{i=1}^m B'_i$.

Let G'' be the intersection graph of the balls in \mathcal{C}'', that is, $V(G'') = \mathcal{C}''$, and two elements $B''_i, B''_j \in \mathcal{C}''$ are adjacent in G'' if and only if $B''_i \cap B''_j \neq \emptyset$. Notice
that G'' has maximum degree at most 12^d. Indeed, for fixed i, the number of balls from \mathcal{C}'' that intersect B_i'' is equal to the number of balls from \mathcal{C}'' that lie within $B(v_i, 3r)$, where $B(v_i, 3r)$ is the ball centered at v_i with radius $3r$. This is at most the number of balls from \mathcal{C} that can be packed in $B(v_i, 3r)$. Using that \mathcal{C} is a packing of balls of radius $r/4$, the number of balls in \mathcal{C} that lie entirely within $B(v_i, 3r)$ is at most

$$\text{Vol}(B(v_i, 3r))/\text{Vol}(B_i) = 12^d.$$

As the graph G'' has maximum degree at most 12^d, it has chromatic number $k \leq 12^d + 1$. So there is a mapping $c : [m] \to [k]$ such that if B_i'' and B_j'' have a nonempty intersection, then $c(i) \neq c(j)$. Now we color the points in V with $2k$ colors of the form (j, t) with $1 \leq j \leq k$ and $t \in \{1, 2\}$, as follows. For $v \in V$, let $i(v)$ be the minimum index i such that $v \in B_i'$. Let S_i be the set of vertices $v \in V$ for which $i(v) = i$. Thus, S_1, \ldots, S_m form a partition of V. If $|S_i| = 1$, then color the vertex in S_i with color $(c(i), 1)$. If $|S_i| > 1$, then color one vertex (chosen arbitrarily) in S_i with color $(c(i), 1)$, and color the rest of the vertices in S_i with color $(c(i), 2)$. Since any two points in V that are adjacent in G have distance at most r, they either belong to the same part S_i, or belong to two different parts S_i and S_j such that $B_i'' \cap B_j'' \neq \emptyset$. Let K be a maximal clique in V. If K contains two vertices u, v that belong to different parts S_i and S_j, then by the coloring c, vertices u and v also get different colors by considering the first coordinate, so K is not monochromatic. Otherwise, there is an i such that $i(v) = i$ for all vertices v in K. So, all vertices of K are in the ball B_i', which has diameter r. By maximality of K, all vertices of V in B_i' and, in particular, all vertices of S_i are in K. Since there are two vertices in S_i that receive different colors, K is not monochromatic. We have thus shown that no maximal clique of G with at least two vertices is monochromatic, so

$$\chi_c(G) \leq 2k \leq 2(12^d + 1).$$

This completes the proof. \qed

3 A new lower bound

For the proof of Theorem 1.2, we will need the following lemma.

Lemma 3.1 (Alon, Ben-Shimon, Krivelevich [1]). There is a positive constant C so that for every natural number d there exists a regular triangle-free graph G on d vertices with independence number $\alpha(G) < C \sqrt{d \log d}$. Moreover, G is Δ-regular where $\Delta = \Theta(\sqrt{d \log d})$.

3
Proof of Theorem 1.2. Let \(d \geq 1 \) and let \(G \) be a \(\Delta \)-regular graph on the vertex set \(V(G) = \{1, \ldots, d\} \) meeting the requirements of Lemma 3.1. Since \(G \) is triangle-free, we have
\[
\chi_c(G) = \chi(G) \geq \frac{d}{\alpha(G)} \geq \Omega(\sqrt{d/\log d}).
\]

Set \(r = \sqrt{2\Delta - 1} \). We can assume that \(d \) is sufficiently large so that \(\sqrt{2\Delta - 2} > 0 \), since otherwise the statement easily follows. We now use an argument due to Frankl and Maehara [4] to construct a \(d \)-element point set \(V = \{v_1, \ldots, v_d\} \) in \(\mathbb{R}^d \) such that \(||v_i - v_j|| \leq r \) if and only if \((i, j) \in E(G) \).

Let \(A = (a_{i,j}) \) be the adjacency matrix of \(G \), that is, \(A \) is a \(d \times d \) symmetric matrix where \(a_{i,j} = 1 \) if \((i, j) \in E(G) \) and \(a_{i,j} = 0 \) if \((i, j) \not\in E(G) \). Since \(G \) is \(\Delta \)-regular and not bipartite, we know that the minimum eigenvalue of \(A \) satisfies \(\lambda_{\min} > -\Delta \). Hence, the matrix \(A + \Delta I \) is positive semidefinite. Therefore
\[
A + \Delta I = BB^T,
\]
for some \(d \times d \) matrix \(B \). Let \(v_i \) be the \(i \)th row of the matrix \(B \) and set \(V = \{v_1, \ldots, v_d\} \subset \mathbb{R}^d \). Reading off the entries of the matrix (1), we obtain
\[
||v_i - v_j||^2 = (v_i - v_j) \cdot (v_i - v_j) = v_i \cdot v_i - 2v_i \cdot v_j + v_j \cdot v_j = 2\Delta - 2a_{i,j},
\]
for \(i \neq j \). In other words, \(||v_i - v_j|| = \sqrt{2\Delta - 2a_{i,j}} \leq r = \sqrt{2\Delta - 1} \) if and only if \((i, j) \in E(G) \). \(\square \)

References

