
Discrete Comput Geom 12:1-7 (1994) 

G 6fi  try 
1994 Springer-Verlag New York Inc, 

Some  Geometr ic  Applications o f  Di lworth's  Theorem* 

J. Pach 1'2 and J. T6r~csik 1 

Mathematical Institute, Hungarian Academy of Sciences, 
Pf. 127, H-1364 Budapest, Hungary 

2 Department of Computer Science, City College, 
New York, NY 10031, USA 
pach@cims6.nyu.edu 

Abstract. A geometric graph is a graph drawn in the plane such that its edges are 
closed line segments and no three vertices are collinear. We settle an old question of 
Avital, Hanani, Erd~s, Kupitz, and Perles by showing that every geometric graph 
with n vertices and m > k4n edges contains k + 1 pairwise disjoint edges. We also 
prove that, given a set of points V and a set of axis-parallel rectangles in the plane, 
then either there are k + 1 rectangles such that no point of V belongs to more than 
one of them, or we can find an at most 2" 105k a element subset of V meeting all 
rectangles. This improves a result of Ding, Seymour, and Winkler. Both proofs are 
based on Dilworth's theorem on partially ordered sets. 

1. Introduction 

Ever since Erd~s and Szekeres [ES] rediscovered Ramsey's theorem [R] to show 

that out of \ n - 2 ] points in the plane it is possible to select n points which 

form a convex n-gon, combinatorial geometry has been a rich area of application 
for Ramsey theory (see [GRS]). Many classes of geometric objects can be equipped 
with natural ordering relations, and this information is often lost when we apply 
Ramsey's theorem. For example, given n convex bodies in the plane, Ramsey's 
theorem only implies that we can choose �89 log2 n of them which are either pairwise 
disjoint or pairwise intersecting. However, as we have shown in a recent paper 
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[LMPT] ,  n 1/5 elements can also be chosen with the above property. Our proof 
was based on the following well-known result [D-]. 

Dilworth's Theorem. Let P be a partially ordered set containing no chain (totally 
ordered subset) of k + 1 elements. Then P can be covered by k antichains (subsets 
of pairwise incomparable elements). 

In this note we present some further applications of the same idea. 
A geometric graph G is a graph drawn in the plane by (possibly crossing) line 

segments, i.e., it is defined as a pair (V(G), E(G)), where V(G) is a set of points in 
the plane in general position and E(G) is a collection of closed line segments whose 
endpoints belong to V(G). 

The following question was raised by Avital and Hanani [AH], Kupitz [K], 
and Perles: Determine the smallest number ek(n) such that any geometric graph 
with n vertices and m > ek(n ) edges contains k + 1 pairwise disjoint edges. An old 
result of Hopf and Pannwitz [HP]  and Erd6s [E] implies that ex(n ) --- n. Alon 
and Erd6s [AE] showed that e2(n)< 6n, which was subsequently improved 
by O'Donnel and Perles [OP]  and Goddard et al. [G K K ]  to e2(n)_< 3n. In 
the latter paper it has also been established that e3(n) < 10n and, for any fixed k, 
ek(n ) < ctn log 1-3 n with a suitable constant Ck. 

Theorem 1. Any geometric graph with n vertices and more than k4n edges contains 
at least k + 1 pairwise disjoint edges. 

This means that ek(n ) <_ k4n for all k and n. Moreover, we can show that if a 
geometric graph has much more than ek(n ) edges, then it has many (k + 1)-tuples 
of pairwise disjoint edges. 

Theorem 2. For every k, there exists C'k > 0 such that any geometric graph with n 
vertices and m > k 4n edges has at least C'k m2k + 1/n2k (k + 1)-tuples of pairwise disjoint 
edges. Furthermore, this bound is asymptotically tight apart from the exact value 
of 4. 

Our next result can also be established by repeated application of Dilworth's 
theorem. It is a substantial improvement of a theorem of Ding et al. [DSW], 
whose original proof requires more involved techniques. 

Theorem 3. Let V and ~ be a set of points and a set of axis-parallel rectangles in 
the plane, respectively, and suppose that every element of ~t contains at least one 
point of V. Then for any natural number k, either 

(i) there are k + 1 rectangles in ~ so that no point of V belongs to more than 
one of them, or 

(ii) one can choose at most 2" 105k 8 points of V so that every member of ~1 
contains at least one of them. 

In [DSW] the same result was proved with (k + 63) 127, instead of 2- 105k s. 



Some Geometric Applications of Dilworth's Theorem 3 

Z Geometric Graphs 

First we prove Theorem 1. Let G be a geometric graph on n vertices and m edges, 
containing no k + 1 pairwise disjoint edges. Let x(v) and y(v) denote the x- 
coordinate and the y-coordinate of a point v, respectively. For any two edges 
e = VlVz, e ' =  vlv2' ' ~E(G) ,  we say that e precedes e' (in notation, e ,~ e') if 
x(vl) < x(v't) and x(v2) < x(v'2). Furthermore, e is said to lie below e', if there is 
no vertical line l (parallel to the y-axis) which intersects both e and e' with 
y(l n e ) >  y(l n e'). If e is below e', then we write e ~( e'. Note that -< is not 
necessarily a transitive relation on E(G). Finally, let 7r(e) denote the orthogonal 
projection of e onto the x-axis. 

Define four binary relations -<~ (i = 1 . . . . .  4) on E(G), as follows. Two edges 
can be related by any of these relations only if they are disjoint. Given two disjoint 
edges e, e' e E(G), let 

e ~(~e' if e ,~e '  and e ~ e ' ,  

e <(2 e' if e ~ e '  and e ~- e', 

e-<ae '  if 7r(e)_n(e') and e~(e ' ,  

e~(4e '  if 7r(e)~Tr(e') and e;>-e'. 

It follows readily from the definitions that: 

(a) Each of the relations ~(i (i --- 1 . . . . .  4) is transitive. 
(b) Any pair of disjoint edges is comparable by at least one of the relations 

-.(i(i = 1 . . . . .  4). 

None of the partial orders (E(G), ~(~) contains a chain of length k + 1, otherwise 
G would have k + 1 pairwise disjoint edges. By Dilworth's theorem, for any i, E(G) 
can be partitioned into at most k classes so that no two edges belonging to the 
same class are comparable by -<~. Superimposing these four partitions, we obtain 
a decomposition of E(G) into at most k 4 classes Ej (1 _<j _< k 4) so that no two 
elements of Ej are related by any ~(~. Hence, by (b), none of the classes Ej contains 
two disjoint edges, which implies that [Ejl < e l (n )= n. Therefore, m = IE(G)I = 
~.k'=t IEjl < k4n, as desired. [ ]  

Next we deduce Theorem 2 from Theorem 1, by using an idea of Ajtai et al. 
[ACNS]. Given a geometric graph G with n vertices and m > ek(n) + n edges, let 
f (G)  denote the number of k + 1-tuples of pairwise disjoint edges in G. We show, 
by induction on n, that 

m ~ 2 k + l  

(,) 

whenever m > ek(n) + n. 



4 J. Pach and J. T6r6csik 

It follows from Theorem 1 that f ( G )  > m - ek(n), which is stronger than (,) if 
e~(n) + n < m < eh(n) + 2n, and it also shows that (,) holds for n = k 4 + 3. 

Suppose now that n > k 4 + 3, m > ek(n)+ 2n, and that we have already 
established the above inequality for all graphs with at most n -  1 vertices. For 
any v ~ V(G), let d(v) denote the number of edges of G incident to v, and let G - v 
stand for the graph obtained from G by the deletion of v. Using the induction 
hypothesis, we get 

n - - l )  
2k + 2 

( n - 2 k - 2 ) f ( G ) =  ~ f ( G  - v) > (6k) -6k  

( n - ' )  2'+1 2 
(m -- d(v)) 2k + ' 

(Notice that G - v has at least m - (n - 1) ~ ek(n - 1) + (n - 1) edges.) However, 
by Jensen's inequality, 

)2k+1 (n -- 2)2k+ lm 2k+1 
(m-d(v)) 2k+l~n-2k ~ (m - d(v)) = n2 h , 

veV(O) \veV(O) 

and (.) follows. This proves the first part of Theorem 2. 
To show that, for any fixed k, the bound is tight up to a constant factor 

depending only on k, assume that n < m < n2/16 and set t = [_n2/8ml. Divide a 
circle into 2t equal arcs A1 . . . . .  A2, and pick n vertices on the circle as equally 
distributed among the arcs as possible. Join every vertex belonging to At to all 
vertices in A~+t by line segments (1 _< i < t). The resulting geometric graph has n 
vertices and at least m edges. Furthermore, for any (k + 1)-tuple of pairwise disjoint 
edges of G, there exists an i such that all endpoints of these edges lie in At u A~+t. 
Thus, the number of these (k + 1)-tuples cannot exceed 

[" n -l 2k + 2 (lOm)2k + I 

t[~ / -< n2, 

completing the proof of Theorem 2. []  

3. Systems of Points and Rectangles 

In this section we establish Theorem 3. 
Let V be a set of points and let ~ be a set of axis-parallel rectangles in the 

plane. Two rectangles R, S ~ ~ are said to be almost  disjoint  if R :~ S contains no 
element of V. For  any R e ~ ,  let ~x(R) and ny(R) denote the orthogonal projections 
of R onto the x-axis and onto the y-axis, respectively. Given two intervals I, J on 
the x-axis (or on the y-axis), we say that I precedes J (or, in notation, I ~ J) ff 



Some Geometric Applications of Dilworth's Theorem 5 

the left and right endpoints of I precede the left and right endpoints of J, 
respectively. 

Define eight binary relations "<i (i = 1 . . . . .  8) on ~ ,  as follows. Two rectangles 
can be related by any of these relations only if they are almost disjoint. Given a 
pair of almost disjoint rectangles R, S �9 ~ ,  let 

R "<l S if nx(R ) ~_ nx(S) and roy(R) <~ roy(S), 

R <2 S if n:,(R) ~_ n,,(S) and ny(R) >> ny(S), 

R -< a S if n~(R) ~. try(S) and ny(R) _~ ~y(S), 

R "<aS if nx(R) '~ n~(S) and ny(R) _D try(S), 

R ~(5 S if n~(R) ,~ n~(S) and ny(R) ,~ Try(S), 

g -<6 S if nx(g) ,~ n~(S) and ny(g) >> ny(S), 

R -<7 S if n~(R) ~_ rc~(S) and try(R) ~_ ny(S), 

R ~ a  S if n,,(R) ~_ r~,,(S) and ny(R) ~_ ny(S), 

It follows from the definitions that: 

(a) Each of the relations "<i (i = 1 . . . . .  8) is transitive. 
(b) Any pair of almost disjoint rectangles is comparable by one of the relations 

~ (i = 1 . . . . .  8). 

We can assume without loss of generality that none of the partial orders (~, -< ~) 
contains a chain of length k + 1, otherwise condition (i) of the theorem holds. 
Hence, by the repeated application of Dilworth's theorem, we obtain that ~ can 
be partitioned into k s classes ~ j  (1 _< j _< k s) so that no pair of rectangles belonging 
to the same class is comparable by any of the relations -<l. This means, by (b), 
that the intersection of any two rectangles belonging to the same class contains 
at least one point of V. 

To prove the theorem, it is sufficient to show that, for any j, at most 2.10 5 
points of V can be selected such that every member of ~ contains at least one of 
them. 

Lemma 1. Let  V be a set o f  points, and let ~t o be a set of  axis-parallel rectangles 
in the plane such that the intersection of  any two members contains at least one 
element o f  V. Then one can choose at most 2.10 5 points of  V so that every member 
of  ~l o contains at least one of  them. 

Proof. By Helly's theorem, N ~o # ~ .  Thus, we can assume without loss of 
generality that the origin (0, 0) is contained in every member of ~o.  Suppose, for 
simplicity, that no point of the coordinate axes belongs to V. Let V~ denote the 
set of all points of V lying in the ith quadrant of the coordinate system (i = 1 . . . . .  4). 
Let V'i consist of all points (x, y) �9 Vi for which there is no (x', y') �9 Vi with x' �9 [0, x], 
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y' e [0, y]. Finally, set V' = V~ w--. u V~. Notice that: 

(a) If we number the elements of V~ according to their (say) x-coordinates, then 
the intersection of any rectangle R e ~o  with V'i consists of a single interval 
of consecutive points (i = 1 . . . . .  4). 

(b) The intersection of any two members of ~o  contains at least one element 
of V'. 

A general theorem of Gyfirf/ts and Lehel [GL]  states that, for every p and q, 
there exists an integer f (p ,  q) < ~ with the following property. Let ~- be a family 
of sets, each of them obtained as the union of p intervals taken from p parallel 
lines. If ~" does not have more than q pairwise disjoint members, then one can 
find at most f (p ,  q) points so that every member of ~- contains at least one of 
them. This easily implies, by (a) and (b), that V' has a subset of size f (4,  1) < 2- 10 5 
meeting every member of ~o.  [] 

4. Concluding Remarks 

Given a partially ordered set of m elements, in O(m 2) time a topological sort can 
be performed and a maximal chain can be found (see [CLR]). Hence, the proof 
in Section 2 also yields the following result. 

Corollary 1. There is an O(m2)-time algorithm for finding at least (m/n) 1/4 pairwise 
disjoint edges in any geometric graph with n vertices and m edges. 

Note that the proof of Theorem 3 can be easily extended to higher dimensions. 

Theorem 4. Let V and ~ be a set o f  points and a set o f  axis-parallel boxes in R d, 
respectively, such that every box contains at least one point. Then, for any natural 
number k, either 

(i) there are k + 1 boxes in �9 so that no point of  V belongs to more than one 
of  them, or 

(ii) one can choose at most cak 2~-~ points in V so that any member of  ~ contains 
at least one of  them, where c a is a constant depending only on d. 

Using some related techniques we can also establish the following strengthening 
of a theorem of B/tniny and Lehel. Given two points x, y ~ R d, let Box(x, y) denote 
the smallest box parallel to the axes, which contains x and y. 

Theorem 5. Any set of  points V ~_ R d contains at most 2 2` elements x i (1 < i < 2 2d) 
such that 

U Box(x,  x~) _ V. 
1 < i < j ~ 2  ~ 
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