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Planar graphs

G = 

Theorem (Euler, 1700s)

Every n-vertex planar graph has at most 3n − 6 edges.

Corollary

Every n-vertex planar has a vertex of degree 5 (5-degenerate).

Theorem (Appel-Haken, 1976)

Planar graphs are 4-colorable.
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k-quasi-planar graphs

Definition: A graph is k-quasi-planar if it can be drawn in the
plane with no k pairwise crossing edges.

5K    =

Conjecture (Folklore)

Every n-vertex k-quasi-planar graph has at most Ok(n) edges.
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k-quasi-planar graphs

5K    =

Conjecture (Folklore)

Every n-vertex k-quasi-planar graph has at most Ok(n) edges.

k = 3, Pach-Radoicic-Toth 2003, Ackerman-Tardos 2007
(Agarwal-Aronov-Pach-Pollack-Sharir 1997).

k = 4, Ackerman 2009.

k ≥ 5, n( c log nlog k )2 log k−4, Fox-Pach-S. 2022.

Straight-line edges, O(n log n) Valtr 1997.
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Conway’s thrackle conjecture

Definition: A thrackle is a graph drawn in the plane such that
every pair of edges has exactly one point in common.

Conjecture (Conway, 1960s, $1000)

Every n-vertex thrackle has at most n edges.
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Conway’s thrackle conjecture

Conjecture (Conway, 1960s, $1000)

Every n-vertex thrackle has at most n edges.

Lovász-Pach-Szegedy, 1997: |E (G )| ≤ 2n.

Xu, 2021: |E (G )| ≤ 1.393n.

Straight-line edges, Erdős, |E (G )| ≤ n.
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k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with
no k-pairwise disjoint edges, then |E (G )| = Ok(n).

Simple Drawing:
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k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with
no k-pairwise disjoint edges, then |E (G )| = Ok(n).

Drawing of Kn with every pair of edges crossing once or twice.

1 2 3 4 5

=T
5
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k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)
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Open for k ≥ 3.

Pach-Tóth, 2005: |E (G )| ≤ n(log n)4k−8.

Fox-Pach-S., 2024+: |E (G )| ≤ n(log n)O(log k).

Straight-line edges, Tóth 2000, |E (G )| ≤ 29k2n.
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Crossing patterns of curves

General curves vs. Pseudo-segments vs. Segments
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Crossing patterns of curves

General curves vs. Pseudo-segments vs. Segments

Gn be the set of all labelled n-vertex intersection graphs of curves.

Pn be the set of all labelled n-vertex intersection graphs of
pseudo-segments.

Sn be the set of all labelled n-vertex intersection graphs of
segments.
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General curves (string graphs)

Gn be the set of all labelled n-vertex string graphs.

|Gn| = 2Θ(n2).

String graphs have the Erdős-Hajnal property.

Theorem (Tomon, 2023)

Every n-vertex string graph contains a clique or independent set of
size nε, where ε is an absolute constant.
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Segments

Sn be the set of all labelled n-vertex intersection graphs of
segments.

Application of the Milnor-Thom theorem

Theorem (Pach-Solymosi, 2001)

|Sn| = 2O(n log n).

Segment intersection graphs have the strong Erdős-Hajnal property
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Segments

Segment intersection graphs have the strong Erdős-Hajnal property

Theorem (Pach-Solymosi, 2001)

Let G = (V ,E ) be an n-vertex intersection graph of a collection of
segments in the plane. Then there are subsets A,B ⊂ V of size
Ω(n), such that either every segment in A crosses every segment in
B, or every segment in A is disjoint to every segment in B.

G  =
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Theorem (Pach-Solymosi, 2001)

Let G = (V ,E ) be an n-vertex intersection graph of a collection of
segments in the plane. Then there are subsets A,B ⊂ V of size
Ω(n), such that either every segment in A crosses every segment in
B, or every segment in A is disjoint to every segment in B.

G  =

A B

Andrew Suk (UC San Diego) Intersection patterns of pseudo-segments



Segments

Segment intersection graphs have the strong Erdős-Hajnal property
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Generalized to semi-algebraic graphs

Theorem (Pach-Solymosi, 2001)

|Sn| = 2Θ(n log n).

Theorem (Pach-Solymosi, 2001)

Segment intersection graphs have the strong Erdős-Hajnal property.

Both results have been generalized to Semi-algebraic graphs with
bounded complexity (Alon, Pach, Pinchasi, Radoičić, Sharir
(2005), Sauermann (2021))

V = points in Rd .

E = {(u, v) : Φ(f1(u, v) ≥ 0, . . . , ft(u, v) ≥ 0)}, where each fi is a
polynomial of bounded degree.
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Segments vs. Pseudo-Segments vs. General curves

Sn ⊂ Pn ⊂ Gn

|Sn| = 2Θ(n log n) |Gn| = 2Θ(n2)

Strong Erdős-Hajnal property Erdős-Hajnal property

Theorem (Fox, 2006)

Gn does not have the strong Erdős-Hajnal property.
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Segments vs. Pseudo-Segments vs. General curves

Sn ⊂ Pn ⊂ Gn

|Sn| = 2Θ(n log n) |Gn| = 2Θ(n2)

Mighty Erdős-Hajnal property Erdős-Hajnal property

Theorem (Fox, 2006)

Gn does not have the strong Erdős-Hajnal property.

Applications: Need the Mighty Erdős-Hajnal property.
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The mighty Erdős-Hajnal property

Definition

F has the mighty Erdős-Hajnal property if there is a constant
ε > 0 such that for every graph G ∈ F and every pair of disjoint
subsets A,B ⊂ V (G ) there are subsets A′ ⊂ A and B ′ ⊂ B with
|A′| ≥ ε|A| and |B ′| ≥ ε|B| such that the bipartite graph between
A and B in G is complete or empty.

G  =
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F has the mighty Erdős-Hajnal property if there is a constant
ε > 0 such that for every graph G ∈ F and every pair of disjoint
subsets A,B ⊂ V (G ) there are subsets A′ ⊂ A and B ′ ⊂ B with
|A′| ≥ ε|A| and |B ′| ≥ ε|B| such that the bipartite graph between
A and B in G is complete or empty.

G  =

A
B

A’
B’

Andrew Suk (UC San Diego) Intersection patterns of pseudo-segments



Segments

Sn has the mighty Erdős-Hajnal property.

Theorem (Pach-Solymosi, 2001)

Let R be a set of red segments in the plane, and B be a set of
blue segments in the plane. Then there are subsets R′ ⊂ R and
B′ ⊂ B, where |R′| ≥ |R|/330 and |B′| ≥ |B|/330, such that
either red segment in R′ crosses every blue segment in B′, or every
red segment in R′ is disjoint to every blue segment in B′.
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Segments vs. Pseudo-Segments vs. General curves

Sn ⊂ Pn ⊂ Gn

|Sn| = 2Θ(n log n) |Gn| = 2Θ(n2)

Mighty Erdős-Hajnal property Erdős-Hajnal property

Mighty Erdős-Hajnal property ̸= strong Erdős-Hajnal property.

F = family of bipartite graphs.

G  =
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Segments vs. Pseudo-Segments vs. General curves

Sn ⊂ Pn ⊂ Gn

|Sn| = 2Θ(n log n) |Gn| = 2Θ(n2)

Mighty Erdős-Hajnal property Erdős-Hajnal property

Mighty Erdős-Hajnal property ̸= strong Erdős-Hajnal property.

F = family of bipartite graphs.

Theorem (Fox-Pach-Tóth, 2010)

Intersection graphs of convex sets have the strong Erdős-Hajnal
property, but not the mighty Erdős-Hajnal property.
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Pseudo-Segments: Old results

Sn ⊂ Pn ⊂ Gn

|Sn| = 2Θ(n log n) |Gn| = 2Θ(n2)

Mighty Erdős-Hajnal property Erdős-Hajnal property

Theorem (Kynčl, 2007)

2Ω(n log n) < |Pn| < 2O(n3/2 log n)

Theorem (Fox-Pach-S., 2024+)

2Ω(n4/3) < |Pmono
n | ≤ |Pn| ≤ 2O(n3/2 log n).

|Pmono
n | ≤ 2n

3/2−ε
.
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Theorem (Kynčl, 2007)
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Point-line incidences

Theorem (Fox-Pach-S., 2024+)

2Ω(n4/3) < |Pmono
n | ≤ |Pn| ≤ 2O(n3/2 log n).

P = n1/3 × n2/3 grid L = n lines

|I (P, L)| = Θ(n4/3)

p

l
G  =

P L

p

l
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|Sn| = 2Θ(n log n) |Gn| = 2Θ(n2)
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New result

Theorem (Fox-Pach-S., 2024+)

Pn has the mighty Erdős-Hajnal property.

R = n red curves, B = n blue curves, R∪ B pseudo-segments.

R′ ⊂ R, B′ ⊂ B of size Ω(n)
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New result

Theorem (Fox-Pach-S., 2024+)

Pn has the mighty Erdős-Hajnal property.
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R = n red curves, B = n blue curves, R∪ B pseudo-segments.
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Theorem (Fox-Pach-S., 2024+)
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New result

Theorem (Fox-Pach-S., 2024+)

Pn has the mighty Erdős-Hajnal property.

Ideas of the proof.
R′ ⊂ R, B′ ⊂ B = n of size Ω(n), ε-homogeneous.

R’ B’

Intersection graphs G (R′) and G (B′) has edge density less than ε
or greater than 1− ε.
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New result

R’ B’

Case 1. Both G (R′) and G (B′) have edge density less than ε.

1 Separator theorem.

2 Strong Erdős-Hajnal property.

Case 2. G (R′) has edge density at least 1− ε and G (B′) has edge
density less than ε.

1 Density increment argument.

2 Extending to pseudolines.

3 Cutting Lemma.

Case 3. Both G (R′) and G (B′) have edge density at least 1− ε.
Repeat the arguments in Case 2.
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Applications

Theorem (Fox-Pach-S., 2024+)

Pn has the mighty Erdős-Hajnal property.

homogeneous density property

Theorem (Fox-Pach-S., 2024+)

There is an absolute constant c > 0 such that the following holds.
Let R be a collection of n red curves, and B be a collection of n
blue curves in the plane such that R∪ B is a collection of
pseudo-segments.

1 If there are at least δn2 disjoint pairs in R×B, then there are
subsets R′ and B′, each of size δcn, such that every red curve
in R′ is disjoint to every blue curve in B′.

2 If there are at least δn2 crossing pairs in R× B, then there
are subsets R′ and B′, each of size δcn, such that every red
curve in R′ is disjoint to every blue curve in B′.
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Mighty EH property ⇒ Density theorems

R = n red curves.

B = n red curves.

G = disjointness graph between R and B. |E (G )| ≥ δn2.

G  =

BR

(α, β) ∈ E (G ) if α and β are disjoint.
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Mighty EH property ⇒ Density theorems

Set ϵ to be the constant from the Mighty EH property.

Theorem (Szemerédi 1978, Komlós 1996)

Let G = (R∪ B,E ) be a bipartite graph with at least δn2 edges.
Then for any ε > 0, there are subsets R′ and B′, each of size
δ1/ε

2
n, such that every subset X ⊂ R′ and Y ⊂ B′ of size at least

ε|R′| and ε|B′| respectively contains an edge.

G  =

R B
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Application of the density theorems

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with
no k pairwise disjoint edges, then |E (G )| = Ok(n).

Previous bound: Pach-Tóth, 2005: |E (G )| ≤ n(log n)4k−8.

Theorem (Fox-Pach-S., 2024+)

If G is an n-vertex graph with a simple drawing in the plane with
no k-pairwise disjoint edges, then |E (G )| ≤ n(log n)O(log k).
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Application of the density theorems

Conjecture (folklore)

If G is an n-vertex graph with Ω(n2) edges, then any simple
drawing of G in the plane contains nO(1) pairwise disjoint edges.

Previous bound: Fox-Sudakov, 2009: log1+ε n disjoint edges.

Theorem (Fox-Pach-S., 2024+)

If G is an n-vertex graph with n1+ε edges, then any simple drawing
of G in the plane contains n

ε
10 log log n pairwise disjoint edges.

Andrew Suk (UC San Diego) Intersection patterns of pseudo-segments



Application of the density theorems

Conjecture (folklore)

If G is an n-vertex graph with Ω(n2) edges, then any simple
drawing of G in the plane contains nO(1) pairwise disjoint edges.

Previous bound: Fox-Sudakov, 2009: log1+ε n disjoint edges.

Theorem (Fox-Pach-S., 2024+)

If G is an n-vertex graph with n1+ε edges, then any simple drawing
of G in the plane contains n

ε
10 log log n pairwise disjoint edges.

Andrew Suk (UC San Diego) Intersection patterns of pseudo-segments



Application of the density theorems

Conjecture (folklore)

If G is an n-vertex graph with Ω(n2) edges, then any simple
drawing of G in the plane contains nO(1) pairwise disjoint edges.

Previous bound: Fox-Sudakov, 2009: log1+ε n disjoint edges.

Theorem (Fox-Pach-S., 2024+)

If G is an n-vertex graph with n1+ε edges, then any simple drawing
of G in the plane contains n

ε
10 log log n pairwise disjoint edges.

Andrew Suk (UC San Diego) Intersection patterns of pseudo-segments



A new regularity lemma for pseudo-segments

Mighty EH property ⇔ density theorems ⇔ strong regularity
lemma

Theorem (Fox-Pach-S., 2024+)

For every ε, there is a K = K (ε), such that every intersection
graph of pseudo-segments in the plane has an equipartition on its
vertex set into K parts, V1, . . . ,VK , such that for all but an ε
fraction of pairs of parts (Vi ,Vj) are complete or empty in G.

G  =
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Open problems: Polynomial strong regularity lemma

Theorem (Fox-Pach-S., 2024+)

For every ε, there is a K = K (ε), such that every intersection
graph of pseudo-segments in the plane has an equipartition on its
vertex set into K parts, V1, . . . ,VK , such that for all but an ε
fraction of pairs of parts (Vi ,Vj) are complete or empty in G.

Conjecture (Fox-Pach-S., 2024+)

K = (1/ε)c

Fox-Pach-S.: K is a tower of 2’s of height (1/ε)c
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Open problems: k-quasi-thrackle conjecture

Conjecture (Pach-Tóth, 2005)

If G is an n-vertex graph with a simple drawing in the plane with
no k-pairwise disjoint edges, then |E (G )| = Ok(n).

Andrew Suk (UC San Diego) Intersection patterns of pseudo-segments



Open problems: Incidences between points and
2-intersecting curves

Theorem (Fox-Pach-S., 2024+)

2Ω(n4/3) < |Pmono
n | ≤ |Pn| ≤ 2O(n3/2 log n).

P = n1/3 × n2/3 grid L = n lines

|I (P, L)| = Θ(n4/3)

p

l
G  =

P L

p

l
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Open problems: Incidences between points and
2-intersecting curves

Problem

What is the maximum number of incidences between n points and
n 2-intersecting curves in the plane?

P = n1/3 × n2/3 grid L = n lines

|I (P, L)| = Θ(n4/3)

p

l
G  =

P L

p

l
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Open problems: Incidences between points and
2-intersecting curves

Problem

What is the maximum number of incidences between n points and
n 2-intersecting curves in the plane?

P = n points L = n 2-intersecting curves

Pach-Sharir, 1998

Ω(n4/3) ≤ |I (P, L)| = O(n7/5)

Andrew Suk (UC San Diego) Intersection patterns of pseudo-segments



Open problems: Incidences between points and
k-intersecting curves

Problem

What is the maximum number of incidences between n points and
n k-intersecting curves in the plane?

P = n points L = n k-intersecting curves

Pach-Sharir, 1998

Ω(n4/3) ≤ |I (P, L)| = O(n
3k−2
2k−1 )

Application:

2Ω(n4/3) < |P(k)
n | < 2O(n2−ε).
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Open problems: Incidences between points and
k-intersecting curves

Problem

What is the maximum number of incidences between n points and
n k-intersecting curves in the plane?

P = n points L = n k-intersecting curves

Pach-Sharir, 1998
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Application:

2Ω(n4/3) < |P(k)
n | < 2O(n2−ε).
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Thank you!
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